This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cvsdiv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cvsunit | ⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cvsdiv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | id | ⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec ) | |
| 4 | 3 | cvsclm | ⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod ) |
| 5 | 1 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ ℂVec → 0 = ( 0g ‘ 𝐹 ) ) |
| 7 | 6 | sneqd | ⊢ ( 𝑊 ∈ ℂVec → { 0 } = { ( 0g ‘ 𝐹 ) } ) |
| 8 | 7 | difeq2d | ⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 9 | 3 | cvslvec | ⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ LVec ) |
| 10 | 1 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 11 | eqid | ⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 13 | 2 11 12 | isdrng | ⊢ ( 𝐹 ∈ DivRing ↔ ( 𝐹 ∈ Ring ∧ ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) ) |
| 14 | 13 | simprbi | ⊢ ( 𝐹 ∈ DivRing → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 15 | 9 10 14 | 3syl | ⊢ ( 𝑊 ∈ ℂVec → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 16 | 8 15 | eqtr4d | ⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |