This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cvsdiv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cvsdiv | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cvsdiv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | simpl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ ℂVec ) | |
| 4 | 3 | cvsclm | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ ℂMod ) |
| 5 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 7 | simpr1 | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ 𝐾 ) | |
| 8 | simpr2 | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ 𝐾 ) | |
| 9 | simpr3 | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 10 | eldifsn | ⊢ ( 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) | |
| 11 | 8 9 10 | sylanbrc | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ) |
| 12 | 1 2 | cvsunit | ⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
| 13 | 3 12 | syl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
| 14 | 1 2 | clmsca | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 15 | 4 14 | syl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( Unit ‘ 𝐹 ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 17 | 13 16 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 18 | 11 17 | eleqtrd | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 19 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 20 | cnflddiv | ⊢ / = ( /r ‘ ℂfld ) | |
| 21 | eqid | ⊢ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 22 | eqid | ⊢ ( /r ‘ ( ℂfld ↾s 𝐾 ) ) = ( /r ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 23 | 19 20 21 22 | subrgdv | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
| 24 | 6 7 18 23 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
| 25 | 15 | fveq2d | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( /r ‘ 𝐹 ) = ( /r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 26 | 25 | oveqd | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) = ( 𝐴 ( /r ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
| 27 | 24 26 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ) |