This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cvsdiv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cvsdivcl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cvsdiv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | cvsdiv | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ) |
| 4 | simpl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ ℂVec ) | |
| 5 | 4 | cvslvec | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ LVec ) |
| 6 | 1 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 7 | drngring | ⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐹 ∈ Ring ) |
| 9 | simpr1 | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ 𝐾 ) | |
| 10 | simpr2 | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ 𝐾 ) | |
| 11 | simpr3 | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 12 | eldifsn | ⊢ ( 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ) |
| 14 | 1 2 | cvsunit | ⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
| 16 | 13 15 | eleqtrd | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( Unit ‘ 𝐹 ) ) |
| 17 | eqid | ⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) | |
| 18 | eqid | ⊢ ( /r ‘ 𝐹 ) = ( /r ‘ 𝐹 ) | |
| 19 | 2 17 18 | dvrcl | ⊢ ( ( 𝐹 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ ( Unit ‘ 𝐹 ) ) → ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
| 20 | 8 9 16 19 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
| 21 | 3 20 | eqeltrd | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |