This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| isclm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | isclm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | isclm | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| 4 | 3 | simp3bi | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |