This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiv.f | |- F = ( Scalar ` W ) |
|
| cvsdiv.k | |- K = ( Base ` F ) |
||
| Assertion | cvsdiv | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A ( /r ` F ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiv.f | |- F = ( Scalar ` W ) |
|
| 2 | cvsdiv.k | |- K = ( Base ` F ) |
|
| 3 | simpl | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> W e. CVec ) |
|
| 4 | 3 | cvsclm | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> W e. CMod ) |
| 5 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 6 | 4 5 | syl | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K e. ( SubRing ` CCfld ) ) |
| 7 | simpr1 | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. K ) |
|
| 8 | simpr2 | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. K ) |
|
| 9 | simpr3 | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 10 | eldifsn | |- ( B e. ( K \ { 0 } ) <-> ( B e. K /\ B =/= 0 ) ) |
|
| 11 | 8 9 10 | sylanbrc | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. ( K \ { 0 } ) ) |
| 12 | 1 2 | cvsunit | |- ( W e. CVec -> ( K \ { 0 } ) = ( Unit ` F ) ) |
| 13 | 3 12 | syl | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( K \ { 0 } ) = ( Unit ` F ) ) |
| 14 | 1 2 | clmsca | |- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 15 | 4 14 | syl | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> F = ( CCfld |`s K ) ) |
| 16 | 15 | fveq2d | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( Unit ` F ) = ( Unit ` ( CCfld |`s K ) ) ) |
| 17 | 13 16 | eqtrd | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( K \ { 0 } ) = ( Unit ` ( CCfld |`s K ) ) ) |
| 18 | 11 17 | eleqtrd | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. ( Unit ` ( CCfld |`s K ) ) ) |
| 19 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 20 | cnflddiv | |- / = ( /r ` CCfld ) |
|
| 21 | eqid | |- ( Unit ` ( CCfld |`s K ) ) = ( Unit ` ( CCfld |`s K ) ) |
|
| 22 | eqid | |- ( /r ` ( CCfld |`s K ) ) = ( /r ` ( CCfld |`s K ) ) |
|
| 23 | 19 20 21 22 | subrgdv | |- ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ B e. ( Unit ` ( CCfld |`s K ) ) ) -> ( A / B ) = ( A ( /r ` ( CCfld |`s K ) ) B ) ) |
| 24 | 6 7 18 23 | syl3anc | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A ( /r ` ( CCfld |`s K ) ) B ) ) |
| 25 | 15 | fveq2d | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( /r ` F ) = ( /r ` ( CCfld |`s K ) ) ) |
| 26 | 25 | oveqd | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A ( /r ` F ) B ) = ( A ( /r ` ( CCfld |`s K ) ) B ) ) |
| 27 | 24 26 | eqtr4d | |- ( ( W e. CVec /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A ( /r ` F ) B ) ) |