This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. ( cvnbtwn4 analog.) (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrle.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrnbtwn4 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ↔ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrle.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 5 | 1 4 3 | cvrnbtwn | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ∧ 𝑍 ( lt ‘ 𝐾 ) 𝑌 ) ) |
| 6 | iman | ⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) → ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ↔ ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) | |
| 7 | neanior | ⊢ ( ( 𝑋 ≠ 𝑍 ∧ 𝑍 ≠ 𝑌 ) ↔ ¬ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) | |
| 8 | 7 | anbi2i | ⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ( 𝑋 ≠ 𝑍 ∧ 𝑍 ≠ 𝑌 ) ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) |
| 9 | an4 | ⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ( 𝑋 ≠ 𝑍 ∧ 𝑍 ≠ 𝑌 ) ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) | |
| 10 | 8 9 | bitr3i | ⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 11 | 2 4 | pltval | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ↔ ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
| 12 | 11 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ↔ ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
| 13 | 2 4 | pltval | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 14 | 13 | 3com23 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 15 | 14 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 16 | 12 15 | anbi12d | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ∧ 𝑍 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) ) |
| 17 | 10 16 | bitr4id | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ↔ ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ∧ 𝑍 ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
| 18 | 17 | notbid | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ↔ ¬ ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ∧ 𝑍 ( lt ‘ 𝐾 ) 𝑌 ) ) ) |
| 19 | 6 18 | bitr2id | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ∧ 𝑍 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) → ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) ) |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ¬ ( 𝑋 ( lt ‘ 𝐾 ) 𝑍 ∧ 𝑍 ( lt ‘ 𝐾 ) 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) → ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) ) |
| 21 | 5 20 | mpbid | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) → ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) |
| 22 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ≤ 𝑍 ) |
| 23 | 22 | 3ad2antr3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ≤ 𝑍 ) |
| 24 | 23 | 3adant3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑍 ≤ 𝑍 ) |
| 25 | breq1 | ⊢ ( 𝑋 = 𝑍 → ( 𝑋 ≤ 𝑍 ↔ 𝑍 ≤ 𝑍 ) ) | |
| 26 | 24 25 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍 → 𝑋 ≤ 𝑍 ) ) |
| 27 | 1 2 3 | cvrle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ≤ 𝑌 ) |
| 28 | 27 | ex | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 29 | 28 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 30 | 29 | 3impia | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ≤ 𝑌 ) |
| 31 | breq2 | ⊢ ( 𝑍 = 𝑌 → ( 𝑋 ≤ 𝑍 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 32 | 30 31 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑋 ≤ 𝑍 ) ) |
| 33 | 26 32 | jaod | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) → 𝑋 ≤ 𝑍 ) ) |
| 34 | breq1 | ⊢ ( 𝑋 = 𝑍 → ( 𝑋 ≤ 𝑌 ↔ 𝑍 ≤ 𝑌 ) ) | |
| 35 | 30 34 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍 → 𝑍 ≤ 𝑌 ) ) |
| 36 | breq2 | ⊢ ( 𝑍 = 𝑌 → ( 𝑍 ≤ 𝑍 ↔ 𝑍 ≤ 𝑌 ) ) | |
| 37 | 24 36 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
| 38 | 35 37 | jaod | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) → 𝑍 ≤ 𝑌 ) ) |
| 39 | 33 38 | jcad | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) → ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ) ) |
| 40 | 21 39 | impbid | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌 ) ↔ ( 𝑋 = 𝑍 ∨ 𝑍 = 𝑌 ) ) ) |