This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no element between the two arguments of the covers relation. ( cvnbtwn analog.) (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrfval.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrnbtwn | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrfval.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | 1 2 3 | cvrval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 5 | 4 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 6 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) | |
| 7 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 < 𝑧 ↔ 𝑋 < 𝑍 ) ) | |
| 8 | breq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 < 𝑌 ↔ 𝑍 < 𝑌 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 10 | 9 | notbid | ⊢ ( 𝑧 = 𝑍 → ( ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 11 | 10 | rspcv | ⊢ ( 𝑍 ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 12 | 6 11 | biimtrrid | ⊢ ( 𝑍 ∈ 𝐵 → ( ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 13 | 12 | adantld | ⊢ ( 𝑍 ∈ 𝐵 → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 16 | 5 15 | sylbid | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 17 | 16 | 3impia | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |