This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. ( cvnbtwn4 analog.) (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrle.b | |- B = ( Base ` K ) |
|
| cvrle.l | |- .<_ = ( le ` K ) |
||
| cvrle.c | |- C = ( |
||
| Assertion | cvrnbtwn4 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .<_ Y ) <-> ( X = Z \/ Z = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrle.b | |- B = ( Base ` K ) |
|
| 2 | cvrle.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrle.c | |- C = ( |
|
| 4 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 5 | 1 4 3 | cvrnbtwn | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) ) |
| 6 | iman | |- ( ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) <-> -. ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) ) |
|
| 7 | neanior | |- ( ( X =/= Z /\ Z =/= Y ) <-> -. ( X = Z \/ Z = Y ) ) |
|
| 8 | 7 | anbi2i | |- ( ( ( X .<_ Z /\ Z .<_ Y ) /\ ( X =/= Z /\ Z =/= Y ) ) <-> ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) ) |
| 9 | an4 | |- ( ( ( X .<_ Z /\ Z .<_ Y ) /\ ( X =/= Z /\ Z =/= Y ) ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ ( Z .<_ Y /\ Z =/= Y ) ) ) |
|
| 10 | 8 9 | bitr3i | |- ( ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ ( Z .<_ Y /\ Z =/= Y ) ) ) |
| 11 | 2 4 | pltval | |- ( ( K e. Poset /\ X e. B /\ Z e. B ) -> ( X ( lt ` K ) Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
| 12 | 11 | 3adant3r2 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ( lt ` K ) Z <-> ( X .<_ Z /\ X =/= Z ) ) ) |
| 13 | 2 4 | pltval | |- ( ( K e. Poset /\ Z e. B /\ Y e. B ) -> ( Z ( lt ` K ) Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
| 14 | 13 | 3com23 | |- ( ( K e. Poset /\ Y e. B /\ Z e. B ) -> ( Z ( lt ` K ) Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
| 15 | 14 | 3adant3r1 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z ( lt ` K ) Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
| 16 | 12 15 | anbi12d | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) <-> ( ( X .<_ Z /\ X =/= Z ) /\ ( Z .<_ Y /\ Z =/= Y ) ) ) ) |
| 17 | 10 16 | bitr4id | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) <-> ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) ) ) |
| 18 | 17 | notbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. ( ( X .<_ Z /\ Z .<_ Y ) /\ -. ( X = Z \/ Z = Y ) ) <-> -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) ) ) |
| 19 | 6 18 | bitr2id | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) <-> ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) ) ) |
| 20 | 19 | 3adant3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( -. ( X ( lt ` K ) Z /\ Z ( lt ` K ) Y ) <-> ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) ) ) |
| 21 | 5 20 | mpbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .<_ Y ) -> ( X = Z \/ Z = Y ) ) ) |
| 22 | 1 2 | posref | |- ( ( K e. Poset /\ Z e. B ) -> Z .<_ Z ) |
| 23 | 22 | 3ad2antr3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z .<_ Z ) |
| 24 | 23 | 3adant3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> Z .<_ Z ) |
| 25 | breq1 | |- ( X = Z -> ( X .<_ Z <-> Z .<_ Z ) ) |
|
| 26 | 24 25 | syl5ibrcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> X .<_ Z ) ) |
| 27 | 1 2 3 | cvrle | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .<_ Y ) |
| 28 | 27 | ex | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X C Y -> X .<_ Y ) ) |
| 29 | 28 | 3adant3r3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y -> X .<_ Y ) ) |
| 30 | 29 | 3impia | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> X .<_ Y ) |
| 31 | breq2 | |- ( Z = Y -> ( X .<_ Z <-> X .<_ Y ) ) |
|
| 32 | 30 31 | syl5ibrcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> X .<_ Z ) ) |
| 33 | 26 32 | jaod | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X = Z \/ Z = Y ) -> X .<_ Z ) ) |
| 34 | breq1 | |- ( X = Z -> ( X .<_ Y <-> Z .<_ Y ) ) |
|
| 35 | 30 34 | syl5ibcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( X = Z -> Z .<_ Y ) ) |
| 36 | breq2 | |- ( Z = Y -> ( Z .<_ Z <-> Z .<_ Y ) ) |
|
| 37 | 24 36 | syl5ibcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> Z .<_ Y ) ) |
| 38 | 35 37 | jaod | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X = Z \/ Z = Y ) -> Z .<_ Y ) ) |
| 39 | 33 38 | jcad | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X = Z \/ Z = Y ) -> ( X .<_ Z /\ Z .<_ Y ) ) ) |
| 40 | 21 39 | impbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .<_ Z /\ Z .<_ Y ) <-> ( X = Z \/ Z = Y ) ) ) |