This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvnbtwn4 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvnbtwn | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) | |
| 2 | iman | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) | |
| 3 | an4 | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) ) | |
| 4 | ioran | ⊢ ( ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ) | |
| 5 | eqcom | ⊢ ( 𝐶 = 𝐴 ↔ 𝐴 = 𝐶 ) | |
| 6 | 5 | notbii | ⊢ ( ¬ 𝐶 = 𝐴 ↔ ¬ 𝐴 = 𝐶 ) |
| 7 | 6 | anbi1i | ⊢ ( ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) |
| 8 | 4 7 | bitri | ⊢ ( ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) |
| 9 | 8 | anbi2i | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
| 10 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ) | |
| 11 | dfpss2 | ⊢ ( 𝐶 ⊊ 𝐵 ↔ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) | |
| 12 | 10 11 | anbi12i | ⊢ ( ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
| 13 | 3 9 12 | 3bitr4i | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) |
| 14 | 13 | notbii | ⊢ ( ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) |
| 15 | 2 14 | bitr2i | ⊢ ( ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) |
| 16 | 1 15 | imbitrdi | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) ) |