This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvcon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpsscon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) | |
| 2 | chpsscon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐴 ⊊ 𝑥 ↔ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) | |
| 3 | 2 | adantlr | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( 𝐴 ⊊ 𝑥 ↔ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 | chpsscon3 | ⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) |
| 6 | 5 | adantll | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) |
| 7 | 3 6 | anbi12d | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ( ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) ) |
| 8 | choccl | ⊢ ( 𝑥 ∈ Cℋ → ( ⊥ ‘ 𝑥 ) ∈ Cℋ ) | |
| 9 | psseq2 | ⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) ) | |
| 10 | psseq1 | ⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑦 = ( ⊥ ‘ 𝑥 ) → ( ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ ∧ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 | 8 12 | sylan | ⊢ ( ( 𝑥 ∈ Cℋ ∧ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 14 | 13 | ex | ⊢ ( 𝑥 ∈ Cℋ → ( ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ∧ ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 15 | 14 | ancomsd | ⊢ ( 𝑥 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑥 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝑥 ) ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 17 | 7 16 | sylbid | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 18 | 17 | rexlimdva | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 19 | chpsscon1 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ↔ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) | |
| 20 | 19 | adantll | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ↔ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) |
| 21 | chpsscon2 | ⊢ ( ( 𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) | |
| 22 | 21 | ancoms | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) |
| 23 | 22 | adantlr | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) |
| 24 | 20 23 | anbi12d | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ∧ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) ) |
| 25 | choccl | ⊢ ( 𝑦 ∈ Cℋ → ( ⊥ ‘ 𝑦 ) ∈ Cℋ ) | |
| 26 | psseq2 | ⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) ) | |
| 27 | psseq1 | ⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝑥 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) | |
| 28 | 26 27 | anbi12d | ⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) ) |
| 29 | 28 | rspcev | ⊢ ( ( ( ⊥ ‘ 𝑦 ) ∈ Cℋ ∧ ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 30 | 25 29 | sylan | ⊢ ( ( 𝑦 ∈ Cℋ ∧ ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 31 | 30 | ex | ⊢ ( 𝑦 ∈ Cℋ → ( ( 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ∧ ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 32 | 31 | ancomsd | ⊢ ( 𝑦 ∈ Cℋ → ( ( ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ∧ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝑦 ) ⊊ 𝐵 ∧ 𝐴 ⊊ ( ⊥ ‘ 𝑦 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 34 | 24 33 | sylbid | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 35 | 34 | rexlimdva | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 36 | 18 35 | impbid | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 37 | 36 | notbid | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 38 | 1 37 | anbi12d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 39 | cvbr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) | |
| 40 | choccl | ⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) | |
| 41 | choccl | ⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 42 | cvbr | ⊢ ( ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) ) | |
| 43 | 40 41 42 | syl2anr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ∧ ¬ ∃ 𝑦 ∈ Cℋ ( ( ⊥ ‘ 𝐵 ) ⊊ 𝑦 ∧ 𝑦 ⊊ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 44 | 38 39 43 | 3bitr4d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⋖ℋ ( ⊥ ‘ 𝐴 ) ) ) |