This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvcon3 | |- ( ( A e. CH /\ B e. CH ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpsscon3 | |- ( ( A e. CH /\ B e. CH ) -> ( A C. B <-> ( _|_ ` B ) C. ( _|_ ` A ) ) ) |
|
| 2 | chpsscon3 | |- ( ( A e. CH /\ x e. CH ) -> ( A C. x <-> ( _|_ ` x ) C. ( _|_ ` A ) ) ) |
|
| 3 | 2 | adantlr | |- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( A C. x <-> ( _|_ ` x ) C. ( _|_ ` A ) ) ) |
| 4 | chpsscon3 | |- ( ( x e. CH /\ B e. CH ) -> ( x C. B <-> ( _|_ ` B ) C. ( _|_ ` x ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( B e. CH /\ x e. CH ) -> ( x C. B <-> ( _|_ ` B ) C. ( _|_ ` x ) ) ) |
| 6 | 5 | adantll | |- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( x C. B <-> ( _|_ ` B ) C. ( _|_ ` x ) ) ) |
| 7 | 3 6 | anbi12d | |- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( A C. x /\ x C. B ) <-> ( ( _|_ ` x ) C. ( _|_ ` A ) /\ ( _|_ ` B ) C. ( _|_ ` x ) ) ) ) |
| 8 | choccl | |- ( x e. CH -> ( _|_ ` x ) e. CH ) |
|
| 9 | psseq2 | |- ( y = ( _|_ ` x ) -> ( ( _|_ ` B ) C. y <-> ( _|_ ` B ) C. ( _|_ ` x ) ) ) |
|
| 10 | psseq1 | |- ( y = ( _|_ ` x ) -> ( y C. ( _|_ ` A ) <-> ( _|_ ` x ) C. ( _|_ ` A ) ) ) |
|
| 11 | 9 10 | anbi12d | |- ( y = ( _|_ ` x ) -> ( ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) <-> ( ( _|_ ` B ) C. ( _|_ ` x ) /\ ( _|_ ` x ) C. ( _|_ ` A ) ) ) ) |
| 12 | 11 | rspcev | |- ( ( ( _|_ ` x ) e. CH /\ ( ( _|_ ` B ) C. ( _|_ ` x ) /\ ( _|_ ` x ) C. ( _|_ ` A ) ) ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) |
| 13 | 8 12 | sylan | |- ( ( x e. CH /\ ( ( _|_ ` B ) C. ( _|_ ` x ) /\ ( _|_ ` x ) C. ( _|_ ` A ) ) ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) |
| 14 | 13 | ex | |- ( x e. CH -> ( ( ( _|_ ` B ) C. ( _|_ ` x ) /\ ( _|_ ` x ) C. ( _|_ ` A ) ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 15 | 14 | ancomsd | |- ( x e. CH -> ( ( ( _|_ ` x ) C. ( _|_ ` A ) /\ ( _|_ ` B ) C. ( _|_ ` x ) ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 16 | 15 | adantl | |- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( ( _|_ ` x ) C. ( _|_ ` A ) /\ ( _|_ ` B ) C. ( _|_ ` x ) ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 17 | 7 16 | sylbid | |- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( A C. x /\ x C. B ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 18 | 17 | rexlimdva | |- ( ( A e. CH /\ B e. CH ) -> ( E. x e. CH ( A C. x /\ x C. B ) -> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 19 | chpsscon1 | |- ( ( B e. CH /\ y e. CH ) -> ( ( _|_ ` B ) C. y <-> ( _|_ ` y ) C. B ) ) |
|
| 20 | 19 | adantll | |- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( _|_ ` B ) C. y <-> ( _|_ ` y ) C. B ) ) |
| 21 | chpsscon2 | |- ( ( y e. CH /\ A e. CH ) -> ( y C. ( _|_ ` A ) <-> A C. ( _|_ ` y ) ) ) |
|
| 22 | 21 | ancoms | |- ( ( A e. CH /\ y e. CH ) -> ( y C. ( _|_ ` A ) <-> A C. ( _|_ ` y ) ) ) |
| 23 | 22 | adantlr | |- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( y C. ( _|_ ` A ) <-> A C. ( _|_ ` y ) ) ) |
| 24 | 20 23 | anbi12d | |- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) <-> ( ( _|_ ` y ) C. B /\ A C. ( _|_ ` y ) ) ) ) |
| 25 | choccl | |- ( y e. CH -> ( _|_ ` y ) e. CH ) |
|
| 26 | psseq2 | |- ( x = ( _|_ ` y ) -> ( A C. x <-> A C. ( _|_ ` y ) ) ) |
|
| 27 | psseq1 | |- ( x = ( _|_ ` y ) -> ( x C. B <-> ( _|_ ` y ) C. B ) ) |
|
| 28 | 26 27 | anbi12d | |- ( x = ( _|_ ` y ) -> ( ( A C. x /\ x C. B ) <-> ( A C. ( _|_ ` y ) /\ ( _|_ ` y ) C. B ) ) ) |
| 29 | 28 | rspcev | |- ( ( ( _|_ ` y ) e. CH /\ ( A C. ( _|_ ` y ) /\ ( _|_ ` y ) C. B ) ) -> E. x e. CH ( A C. x /\ x C. B ) ) |
| 30 | 25 29 | sylan | |- ( ( y e. CH /\ ( A C. ( _|_ ` y ) /\ ( _|_ ` y ) C. B ) ) -> E. x e. CH ( A C. x /\ x C. B ) ) |
| 31 | 30 | ex | |- ( y e. CH -> ( ( A C. ( _|_ ` y ) /\ ( _|_ ` y ) C. B ) -> E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 32 | 31 | ancomsd | |- ( y e. CH -> ( ( ( _|_ ` y ) C. B /\ A C. ( _|_ ` y ) ) -> E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 33 | 32 | adantl | |- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( ( _|_ ` y ) C. B /\ A C. ( _|_ ` y ) ) -> E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 34 | 24 33 | sylbid | |- ( ( ( A e. CH /\ B e. CH ) /\ y e. CH ) -> ( ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) -> E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 35 | 34 | rexlimdva | |- ( ( A e. CH /\ B e. CH ) -> ( E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) -> E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 36 | 18 35 | impbid | |- ( ( A e. CH /\ B e. CH ) -> ( E. x e. CH ( A C. x /\ x C. B ) <-> E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 37 | 36 | notbid | |- ( ( A e. CH /\ B e. CH ) -> ( -. E. x e. CH ( A C. x /\ x C. B ) <-> -. E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) |
| 38 | 1 37 | anbi12d | |- ( ( A e. CH /\ B e. CH ) -> ( ( A C. B /\ -. E. x e. CH ( A C. x /\ x C. B ) ) <-> ( ( _|_ ` B ) C. ( _|_ ` A ) /\ -. E. y e. CH ( ( _|_ ` B ) C. y /\ y C. ( _|_ ` A ) ) ) ) ) |
| 39 | cvbr | |- ( ( A e. CH /\ B e. CH ) -> ( A |
|
| 40 | choccl | |- ( B e. CH -> ( _|_ ` B ) e. CH ) |
|
| 41 | choccl | |- ( A e. CH -> ( _|_ ` A ) e. CH ) |
|
| 42 | cvbr | |- ( ( ( _|_ ` B ) e. CH /\ ( _|_ ` A ) e. CH ) -> ( ( _|_ ` B ) |
|
| 43 | 40 41 42 | syl2anr | |- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` B ) |
| 44 | 38 39 43 | 3bitr4d | |- ( ( A e. CH /\ B e. CH ) -> ( A |