This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvbr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ Cℋ ↔ 𝐴 ∈ Cℋ ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ) ) |
| 3 | psseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊊ 𝑧 ↔ 𝐴 ⊊ 𝑧 ) ) | |
| 4 | psseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝑥 ) ) | |
| 5 | 4 | anbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) |
| 7 | 6 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) |
| 8 | 3 7 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ↔ ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ) |
| 9 | 2 8 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝑦 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ Cℋ ↔ 𝐵 ∈ Cℋ ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) ) |
| 12 | psseq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 ⊊ 𝑧 ↔ 𝐴 ⊊ 𝐵 ) ) | |
| 13 | psseq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑥 ⊊ 𝑧 ↔ 𝑥 ⊊ 𝐵 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 15 | 14 | rexbidv | ⊢ ( 𝑧 = 𝐵 → ( ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 16 | 15 | notbid | ⊢ ( 𝑧 = 𝐵 → ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 17 | 12 16 | anbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) |
| 18 | 11 17 | anbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐴 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) ) |
| 19 | df-cv | ⊢ ⋖ℋ = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ Cℋ ∧ 𝑧 ∈ Cℋ ) ∧ ( 𝑦 ⊊ 𝑧 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝑦 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝑧 ) ) ) } | |
| 20 | 9 18 19 | brabg | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) ) |
| 21 | 20 | bianabs | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) |