This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpsscon2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | ⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) | |
| 2 | chpsscon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 | ococ | ⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 6 | 5 | psseq1d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊊ ( ⊥ ‘ 𝐴 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| 7 | 3 6 | bitrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊊ ( ⊥ ‘ 𝐴 ) ) ) |