This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018) (Revised by AV, 7-Jun-2018) (Proof shortened by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshw1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | ⊢ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) | |
| 2 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 0 ) ) | |
| 3 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ∅ ) |
| 5 | 4 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 6 | 1 5 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 7 | 6 | a1d | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 8 | simprl | ⊢ ( ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 9 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 10 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 11 | 10 | a1i | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ) → 1 ∈ ℕ0 ) |
| 12 | df-ne | ⊢ ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ ¬ ( ♯ ‘ 𝑊 ) = 0 ) | |
| 13 | elnnne0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) ) | |
| 14 | 13 | simplbi2com | ⊢ ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 15 | 12 14 | sylbir | ⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 0 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 16 | 15 | adantr | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 17 | 16 | impcom | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 18 | neqne | ⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 1 → ( ♯ ‘ 𝑊 ) ≠ 1 ) | |
| 19 | 18 | ad2antll | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ) → ( ♯ ‘ 𝑊 ) ≠ 1 ) |
| 20 | nngt1ne1 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( ♯ ‘ 𝑊 ) ≠ 1 ) ) | |
| 21 | 17 20 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ) → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( ♯ ‘ 𝑊 ) ≠ 1 ) ) |
| 22 | 19 21 | mpbird | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ) → 1 < ( ♯ ‘ 𝑊 ) ) |
| 23 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 1 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 1 < ( ♯ ‘ 𝑊 ) ) ) | |
| 24 | 11 17 22 23 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 25 | 24 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 26 | 9 25 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 28 | 27 | impcom | ⊢ ( ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 29 | simprr | ⊢ ( ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → ( 𝑊 cyclShift 1 ) = 𝑊 ) | |
| 30 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 31 | 30 13 | sylbbr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 32 | 31 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ≠ 0 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 33 | 12 32 | biimtrrid | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑊 ) = 0 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 34 | 9 33 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( ♯ ‘ 𝑊 ) = 0 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ( ¬ ( ♯ ‘ 𝑊 ) = 0 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 36 | 35 | com12 | ⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 38 | 37 | imp | ⊢ ( ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 39 | elfzoelz | ⊢ ( 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 1 ∈ ℤ ) | |
| 40 | cshweqrep | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 1 ) = 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 41 | 39 40 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 1 ) = 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 42 | 41 | imp | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( ( 𝑊 cyclShift 1 ) = 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 43 | 8 28 29 38 42 | syl22anc | ⊢ ( ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 44 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 45 | fzossnn0 | ⊢ ( 0 ∈ ℕ0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 ) | |
| 46 | ssralv | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 → ( ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 47 | 44 45 46 | mp2b | ⊢ ( ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 48 | eqcom | ⊢ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ) | |
| 49 | elfzoelz | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑖 ∈ ℤ ) | |
| 50 | zre | ⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℝ ) | |
| 51 | ax-1rid | ⊢ ( 𝑖 ∈ ℝ → ( 𝑖 · 1 ) = 𝑖 ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑖 ∈ ℤ → ( 𝑖 · 1 ) = 𝑖 ) |
| 53 | 52 | oveq2d | ⊢ ( 𝑖 ∈ ℤ → ( 0 + ( 𝑖 · 1 ) ) = ( 0 + 𝑖 ) ) |
| 54 | zcn | ⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) | |
| 55 | 54 | addlidd | ⊢ ( 𝑖 ∈ ℤ → ( 0 + 𝑖 ) = 𝑖 ) |
| 56 | 53 55 | eqtrd | ⊢ ( 𝑖 ∈ ℤ → ( 0 + ( 𝑖 · 1 ) ) = 𝑖 ) |
| 57 | 49 56 | syl | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 0 + ( 𝑖 · 1 ) ) = 𝑖 ) |
| 58 | 57 | oveq1d | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑖 mod ( ♯ ‘ 𝑊 ) ) ) |
| 59 | zmodidfzoimp | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑖 mod ( ♯ ‘ 𝑊 ) ) = 𝑖 ) | |
| 60 | 58 59 | eqtrd | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) = 𝑖 ) |
| 61 | 60 | fveqeq2d | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ↔ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 62 | 61 | biimpd | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 63 | 48 62 | biimtrid | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 64 | 63 | ralimia | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 65 | 47 64 | syl | ⊢ ( ∀ 𝑖 ∈ ℕ0 ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + ( 𝑖 · 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 66 | 43 65 | syl | ⊢ ( ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 67 | 66 | ex | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ¬ ( ♯ ‘ 𝑊 ) = 1 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 68 | 67 | impancom | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → ( ¬ ( ♯ ‘ 𝑊 ) = 1 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 69 | eqid | ⊢ ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) | |
| 70 | c0ex | ⊢ 0 ∈ V | |
| 71 | fveqeq2 | ⊢ ( 𝑖 = 0 → ( ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) ) | |
| 72 | 70 71 | ralsn | ⊢ ( ∀ 𝑖 ∈ { 0 } ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 73 | 69 72 | mpbir | ⊢ ∀ 𝑖 ∈ { 0 } ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) |
| 74 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 1 ) ) | |
| 75 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 76 | 74 75 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = { 0 } ) |
| 77 | 76 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ∀ 𝑖 ∈ { 0 } ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 78 | 73 77 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 79 | 68 78 | pm2.61d2 | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 80 | 79 | ex | ⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 81 | 7 80 | pm2.61i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 cyclShift 1 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |