This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018) (Revised by AV, 7-Jun-2018) (Proof shortened by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshw1 | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | |- A. i e. (/) ( W ` i ) = ( W ` 0 ) |
|
| 2 | oveq2 | |- ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 0 ) ) |
|
| 3 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 4 | 2 3 | eqtrdi | |- ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = (/) ) |
| 5 | 4 | raleqdv | |- ( ( # ` W ) = 0 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> A. i e. (/) ( W ` i ) = ( W ` 0 ) ) ) |
| 6 | 1 5 | mpbiri | |- ( ( # ` W ) = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 7 | 6 | a1d | |- ( ( # ` W ) = 0 -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 8 | simprl | |- ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> W e. Word V ) |
|
| 9 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 10 | 1nn0 | |- 1 e. NN0 |
|
| 11 | 10 | a1i | |- ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> 1 e. NN0 ) |
| 12 | df-ne | |- ( ( # ` W ) =/= 0 <-> -. ( # ` W ) = 0 ) |
|
| 13 | elnnne0 | |- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) |
|
| 14 | 13 | simplbi2com | |- ( ( # ` W ) =/= 0 -> ( ( # ` W ) e. NN0 -> ( # ` W ) e. NN ) ) |
| 15 | 12 14 | sylbir | |- ( -. ( # ` W ) = 0 -> ( ( # ` W ) e. NN0 -> ( # ` W ) e. NN ) ) |
| 16 | 15 | adantr | |- ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> ( ( # ` W ) e. NN0 -> ( # ` W ) e. NN ) ) |
| 17 | 16 | impcom | |- ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> ( # ` W ) e. NN ) |
| 18 | neqne | |- ( -. ( # ` W ) = 1 -> ( # ` W ) =/= 1 ) |
|
| 19 | 18 | ad2antll | |- ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> ( # ` W ) =/= 1 ) |
| 20 | nngt1ne1 | |- ( ( # ` W ) e. NN -> ( 1 < ( # ` W ) <-> ( # ` W ) =/= 1 ) ) |
|
| 21 | 17 20 | syl | |- ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> ( 1 < ( # ` W ) <-> ( # ` W ) =/= 1 ) ) |
| 22 | 19 21 | mpbird | |- ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> 1 < ( # ` W ) ) |
| 23 | elfzo0 | |- ( 1 e. ( 0 ..^ ( # ` W ) ) <-> ( 1 e. NN0 /\ ( # ` W ) e. NN /\ 1 < ( # ` W ) ) ) |
|
| 24 | 11 17 22 23 | syl3anbrc | |- ( ( ( # ` W ) e. NN0 /\ ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) |
| 25 | 24 | ex | |- ( ( # ` W ) e. NN0 -> ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 26 | 9 25 | syl | |- ( W e. Word V -> ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 27 | 26 | adantr | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 28 | 27 | impcom | |- ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> 1 e. ( 0 ..^ ( # ` W ) ) ) |
| 29 | simprr | |- ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> ( W cyclShift 1 ) = W ) |
|
| 30 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) |
|
| 31 | 30 13 | sylbbr | |- ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) |
| 32 | 31 | ex | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) =/= 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 33 | 12 32 | biimtrrid | |- ( ( # ` W ) e. NN0 -> ( -. ( # ` W ) = 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 34 | 9 33 | syl | |- ( W e. Word V -> ( -. ( # ` W ) = 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 35 | 34 | adantr | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> ( -. ( # ` W ) = 0 -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 36 | 35 | com12 | |- ( -. ( # ` W ) = 0 -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 37 | 36 | adantr | |- ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 38 | 37 | imp | |- ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) |
| 39 | elfzoelz | |- ( 1 e. ( 0 ..^ ( # ` W ) ) -> 1 e. ZZ ) |
|
| 40 | cshweqrep | |- ( ( W e. Word V /\ 1 e. ZZ ) -> ( ( ( W cyclShift 1 ) = W /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) ) |
|
| 41 | 39 40 | sylan2 | |- ( ( W e. Word V /\ 1 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift 1 ) = W /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) ) |
| 42 | 41 | imp | |- ( ( ( W e. Word V /\ 1 e. ( 0 ..^ ( # ` W ) ) ) /\ ( ( W cyclShift 1 ) = W /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) |
| 43 | 8 28 29 38 42 | syl22anc | |- ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) |
| 44 | 0nn0 | |- 0 e. NN0 |
|
| 45 | fzossnn0 | |- ( 0 e. NN0 -> ( 0 ..^ ( # ` W ) ) C_ NN0 ) |
|
| 46 | ssralv | |- ( ( 0 ..^ ( # ` W ) ) C_ NN0 -> ( A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) ) |
|
| 47 | 44 45 46 | mp2b | |- ( A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) ) |
| 48 | eqcom | |- ( ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) <-> ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) = ( W ` 0 ) ) |
|
| 49 | elfzoelz | |- ( i e. ( 0 ..^ ( # ` W ) ) -> i e. ZZ ) |
|
| 50 | zre | |- ( i e. ZZ -> i e. RR ) |
|
| 51 | ax-1rid | |- ( i e. RR -> ( i x. 1 ) = i ) |
|
| 52 | 50 51 | syl | |- ( i e. ZZ -> ( i x. 1 ) = i ) |
| 53 | 52 | oveq2d | |- ( i e. ZZ -> ( 0 + ( i x. 1 ) ) = ( 0 + i ) ) |
| 54 | zcn | |- ( i e. ZZ -> i e. CC ) |
|
| 55 | 54 | addlidd | |- ( i e. ZZ -> ( 0 + i ) = i ) |
| 56 | 53 55 | eqtrd | |- ( i e. ZZ -> ( 0 + ( i x. 1 ) ) = i ) |
| 57 | 49 56 | syl | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( 0 + ( i x. 1 ) ) = i ) |
| 58 | 57 | oveq1d | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) = ( i mod ( # ` W ) ) ) |
| 59 | zmodidfzoimp | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( i mod ( # ` W ) ) = i ) |
|
| 60 | 58 59 | eqtrd | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) = i ) |
| 61 | 60 | fveqeq2d | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) = ( W ` 0 ) <-> ( W ` i ) = ( W ` 0 ) ) ) |
| 62 | 61 | biimpd | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) = ( W ` 0 ) -> ( W ` i ) = ( W ` 0 ) ) ) |
| 63 | 48 62 | biimtrid | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> ( W ` i ) = ( W ` 0 ) ) ) |
| 64 | 63 | ralimia | |- ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 65 | 47 64 | syl | |- ( A. i e. NN0 ( W ` 0 ) = ( W ` ( ( 0 + ( i x. 1 ) ) mod ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 66 | 43 65 | syl | |- ( ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 67 | 66 | ex | |- ( ( -. ( # ` W ) = 0 /\ -. ( # ` W ) = 1 ) -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 68 | 67 | impancom | |- ( ( -. ( # ` W ) = 0 /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> ( -. ( # ` W ) = 1 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 69 | eqid | |- ( W ` 0 ) = ( W ` 0 ) |
|
| 70 | c0ex | |- 0 e. _V |
|
| 71 | fveqeq2 | |- ( i = 0 -> ( ( W ` i ) = ( W ` 0 ) <-> ( W ` 0 ) = ( W ` 0 ) ) ) |
|
| 72 | 70 71 | ralsn | |- ( A. i e. { 0 } ( W ` i ) = ( W ` 0 ) <-> ( W ` 0 ) = ( W ` 0 ) ) |
| 73 | 69 72 | mpbir | |- A. i e. { 0 } ( W ` i ) = ( W ` 0 ) |
| 74 | oveq2 | |- ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 1 ) ) |
|
| 75 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 76 | 74 75 | eqtrdi | |- ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = { 0 } ) |
| 77 | 76 | raleqdv | |- ( ( # ` W ) = 1 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> A. i e. { 0 } ( W ` i ) = ( W ` 0 ) ) ) |
| 78 | 73 77 | mpbiri | |- ( ( # ` W ) = 1 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 79 | 68 78 | pm2.61d2 | |- ( ( -. ( # ` W ) = 0 /\ ( W e. Word V /\ ( W cyclShift 1 ) = W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 80 | 79 | ex | |- ( -. ( # ` W ) = 0 -> ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 81 | 7 80 | pm2.61i | |- ( ( W e. Word V /\ ( W cyclShift 1 ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |