This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nngt1ne1 | ⊢ ( 𝐴 ∈ ℕ → ( 1 < 𝐴 ↔ 𝐴 ≠ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 3 | nnge1 | ⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) | |
| 4 | leltne | ⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 < 𝐴 ↔ 𝐴 ≠ 1 ) ) | |
| 5 | 1 2 3 4 | mp3an2i | ⊢ ( 𝐴 ∈ ℕ → ( 1 < 𝐴 ↔ 𝐴 ≠ 1 ) ) |