This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018) (Revised by AV, 7-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshweqrep | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐿 ) = ( 0 · 𝐿 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 0 · 𝐿 ) ) ) |
| 3 | 2 | fvoveq1d | ⊢ ( 𝑥 = 0 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 4 | 3 | eqeq2d | ⊢ ( 𝑥 = 0 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐿 ) = ( 𝑦 · 𝐿 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 𝑦 · 𝐿 ) ) ) |
| 8 | 7 | fvoveq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 | 8 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 11 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 13 | 12 | fvoveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 14 | 13 | eqeq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 · 𝐿 ) = ( 𝑗 · 𝐿 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑥 = 𝑗 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 𝑗 · 𝐿 ) ) ) |
| 18 | 17 | fvoveq1d | ⊢ ( 𝑥 = 𝑗 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑥 = 𝑗 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝑗 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 21 | zcn | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℂ ) | |
| 22 | 21 | mul02d | ⊢ ( 𝐿 ∈ ℤ → ( 0 · 𝐿 ) = 0 ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 0 · 𝐿 ) = 0 ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 0 · 𝐿 ) = 0 ) |
| 25 | 24 | oveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + ( 0 · 𝐿 ) ) = ( 𝐼 + 0 ) ) |
| 26 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℤ ) | |
| 27 | 26 | zcnd | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℂ ) |
| 28 | 27 | addridd | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 29 | 28 | ad2antll | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 30 | 25 29 | eqtrd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + ( 0 · 𝐿 ) ) = 𝐼 ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) ) |
| 32 | zmodidfzoimp | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) | |
| 33 | 32 | ad2antll | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
| 34 | 31 33 | eqtr2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝐼 = ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 36 | fveq1 | ⊢ ( 𝑊 = ( 𝑊 cyclShift 𝐿 ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 37 | 36 | eqcoms | ⊢ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 38 | 37 | ad2antrl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 40 | simprll | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 41 | simprlr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝐿 ∈ ℤ ) | |
| 42 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) | |
| 43 | nn0z | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → 𝐼 ∈ ℤ ) |
| 45 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 46 | zmulcl | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) | |
| 47 | 45 46 | sylan | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
| 48 | 47 | ancoms | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
| 49 | zaddcl | ⊢ ( ( 𝐼 ∈ ℤ ∧ ( 𝑦 · 𝐿 ) ∈ ℤ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ) | |
| 50 | 44 48 49 | syl2an | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ) |
| 51 | simplr | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 52 | 50 51 | jca | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 53 | 52 | ex | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 54 | 53 | 3adant3 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 55 | 42 54 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 57 | 56 | expd | ⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 ∈ ℤ → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
| 58 | 57 | com12 | ⊢ ( 𝐿 ∈ ℤ → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
| 59 | 58 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
| 60 | 59 | imp | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 61 | 60 | impcom | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 62 | zmodfzo | ⊢ ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 64 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ∧ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 65 | 40 41 63 64 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 66 | nn0re | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) | |
| 67 | zre | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) | |
| 68 | nn0re | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) | |
| 69 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 70 | remulcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℝ ) | |
| 71 | 70 | ancoms | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℝ ) |
| 72 | readdcl | ⊢ ( ( 𝐼 ∈ ℝ ∧ ( 𝑦 · 𝐿 ) ∈ ℝ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) | |
| 73 | 71 72 | sylan2 | ⊢ ( ( 𝐼 ∈ ℝ ∧ ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 74 | 73 | ancoms | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 75 | 74 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 76 | simprll | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → 𝐿 ∈ ℝ ) | |
| 77 | simpl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 78 | modaddmod | ⊢ ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) | |
| 79 | 75 76 77 78 | syl3anc | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 80 | recn | ⊢ ( 𝐼 ∈ ℝ → 𝐼 ∈ ℂ ) | |
| 81 | 80 | adantl | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → 𝐼 ∈ ℂ ) |
| 82 | 70 | recnd | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
| 83 | 82 | ancoms | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
| 85 | recn | ⊢ ( 𝐿 ∈ ℝ → 𝐿 ∈ ℂ ) | |
| 86 | 85 | adantr | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝐿 ∈ ℂ ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → 𝐿 ∈ ℂ ) |
| 88 | 81 84 87 | addassd | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) ) |
| 89 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 90 | 89 | adantl | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 91 | 1cnd | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 92 | 90 91 86 | adddird | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) · 𝐿 ) = ( ( 𝑦 · 𝐿 ) + ( 1 · 𝐿 ) ) ) |
| 93 | 85 | mullidd | ⊢ ( 𝐿 ∈ ℝ → ( 1 · 𝐿 ) = 𝐿 ) |
| 94 | 93 | adantr | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · 𝐿 ) = 𝐿 ) |
| 95 | 94 | oveq2d | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + ( 1 · 𝐿 ) ) = ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) |
| 96 | 92 95 | eqtr2d | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
| 97 | 96 | adantr | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
| 98 | 97 | oveq2d | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝐼 + ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 99 | 88 98 | eqtrd | ⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 100 | 99 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 101 | 100 | oveq1d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 102 | 79 101 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 103 | 102 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 104 | 69 103 | syl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 105 | 104 | expd | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 106 | 105 | com12 | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 107 | 67 68 106 | syl2an | ⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 108 | 107 | com13 | ⊢ ( 𝐼 ∈ ℝ → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 109 | 66 108 | syl | ⊢ ( 𝐼 ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 110 | 109 | imp | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 111 | 110 | 3adant3 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 112 | 42 111 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 113 | 112 | expd | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 ∈ ℤ → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 114 | 113 | adantld | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 115 | 114 | adantl | ⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 116 | 115 | impcom | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 117 | 116 | impcom | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 118 | 117 | fveq2d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 119 | 39 65 118 | 3eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 120 | 119 | eqeq2d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 121 | 120 | biimpd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 122 | 121 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 123 | 122 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 124 | 5 10 15 20 35 123 | nn0ind | ⊢ ( 𝑗 ∈ ℕ0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 125 | 124 | com12 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑗 ∈ ℕ0 → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 126 | 125 | ralrimiv | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 127 | 126 | ex | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |