This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018) (Revised by AV, 20-May-2018) (Revised by AV, 26-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshw0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | ⊢ ( ∅ cyclShift 0 ) = ∅ | |
| 2 | oveq1 | ⊢ ( ∅ = 𝑊 → ( ∅ cyclShift 0 ) = ( 𝑊 cyclShift 0 ) ) | |
| 3 | id | ⊢ ( ∅ = 𝑊 → ∅ = 𝑊 ) | |
| 4 | 1 2 3 | 3eqtr3a | ⊢ ( ∅ = 𝑊 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 5 | 4 | a1d | ⊢ ( ∅ = 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | cshword | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 10 | necom | ⊢ ( ∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅ ) | |
| 11 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 12 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 13 | 0mod | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 0 mod ( ♯ ‘ 𝑊 ) ) = 0 ) | |
| 14 | 13 | opeq1d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) |
| 15 | 14 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
| 16 | 13 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 prefix 0 ) ) |
| 17 | 15 16 | oveq12d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 18 | 11 12 17 | 3syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 19 | 10 18 | sylan2b | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 20 | 9 19 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
| 21 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 22 | pfxval | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) | |
| 23 | 21 22 | mpdan | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
| 24 | pfxid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = 𝑊 ) | |
| 25 | 23 24 | eqtr3d | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) = 𝑊 ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) = 𝑊 ) |
| 27 | pfx00 | ⊢ ( 𝑊 prefix 0 ) = ∅ | |
| 28 | 27 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 prefix 0 ) = ∅ ) |
| 29 | 26 28 | oveq12d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) = ( 𝑊 ++ ∅ ) ) |
| 30 | ccatrid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ++ ∅ ) = 𝑊 ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 ++ ∅ ) = 𝑊 ) |
| 32 | 20 29 31 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 33 | 32 | expcom | ⊢ ( ∅ ≠ 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
| 34 | 5 33 | pm2.61ine | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |