This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018) (Proof shortened by AV, 16-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwmodn | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | ⊢ ( ∅ cyclShift 𝑁 ) = ∅ | |
| 2 | oveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift 𝑁 ) = ( ∅ cyclShift 𝑁 ) ) | |
| 3 | oveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ∅ cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 4 | 0csh0 | ⊢ ( ∅ cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ∅ | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ∅ ) |
| 6 | 1 2 5 | 3eqtr4a | ⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 7 | 6 | a1d | ⊢ ( 𝑊 = ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 8 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 9 | 8 | ex | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ≠ ∅ → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 12 | simprr | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) | |
| 13 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 14 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 15 | modabs2 | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) | |
| 16 | 13 14 15 | syl2anr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) |
| 17 | 16 | opeq1d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 〈 ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) |
| 18 | 17 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 substr 〈 ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) |
| 19 | 16 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 prefix ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 20 | 18 19 | oveq12d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 substr 〈 ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 21 | 11 12 20 | syl2anc | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑊 substr 〈 ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 22 | simprl | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 23 | 12 11 | zmodcld | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℕ0 ) |
| 24 | 23 | nn0zd | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
| 25 | cshword | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 substr 〈 ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 substr 〈 ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 27 | cshword | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 29 | 21 26 28 | 3eqtr4rd | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 30 | 29 | ex | ⊢ ( 𝑊 ≠ ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 31 | 7 30 | pm2.61ine | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |