This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero length prefix is the empty set. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfx00 | ⊢ ( 𝑆 prefix 0 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 𝑆 , 0 〉 ∈ ( V × ℕ0 ) ↔ ( 𝑆 ∈ V ∧ 0 ∈ ℕ0 ) ) | |
| 2 | pfxval | ⊢ ( ( 𝑆 ∈ V ∧ 0 ∈ ℕ0 ) → ( 𝑆 prefix 0 ) = ( 𝑆 substr 〈 0 , 0 〉 ) ) | |
| 3 | swrd00 | ⊢ ( 𝑆 substr 〈 0 , 0 〉 ) = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( ( 𝑆 ∈ V ∧ 0 ∈ ℕ0 ) → ( 𝑆 prefix 0 ) = ∅ ) |
| 5 | 1 4 | sylbi | ⊢ ( 〈 𝑆 , 0 〉 ∈ ( V × ℕ0 ) → ( 𝑆 prefix 0 ) = ∅ ) |
| 6 | df-pfx | ⊢ prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) | |
| 7 | ovex | ⊢ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ∈ V | |
| 8 | 6 7 | dmmpo | ⊢ dom prefix = ( V × ℕ0 ) |
| 9 | 5 8 | eleq2s | ⊢ ( 〈 𝑆 , 0 〉 ∈ dom prefix → ( 𝑆 prefix 0 ) = ∅ ) |
| 10 | df-ov | ⊢ ( 𝑆 prefix 0 ) = ( prefix ‘ 〈 𝑆 , 0 〉 ) | |
| 11 | ndmfv | ⊢ ( ¬ 〈 𝑆 , 0 〉 ∈ dom prefix → ( prefix ‘ 〈 𝑆 , 0 〉 ) = ∅ ) | |
| 12 | 10 11 | eqtrid | ⊢ ( ¬ 〈 𝑆 , 0 〉 ∈ dom prefix → ( 𝑆 prefix 0 ) = ∅ ) |
| 13 | 9 12 | pm2.61i | ⊢ ( 𝑆 prefix 0 ) = ∅ |