This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018) (Revised by AV, 20-May-2018) (Revised by AV, 26-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshw0 | |- ( W e. Word V -> ( W cyclShift 0 ) = W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | |- ( (/) cyclShift 0 ) = (/) |
|
| 2 | oveq1 | |- ( (/) = W -> ( (/) cyclShift 0 ) = ( W cyclShift 0 ) ) |
|
| 3 | id | |- ( (/) = W -> (/) = W ) |
|
| 4 | 1 2 3 | 3eqtr3a | |- ( (/) = W -> ( W cyclShift 0 ) = W ) |
| 5 | 4 | a1d | |- ( (/) = W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) |
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | cshword | |- ( ( W e. Word V /\ 0 e. ZZ ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
|
| 8 | 6 7 | mpan2 | |- ( W e. Word V -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
| 9 | 8 | adantr | |- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
| 10 | necom | |- ( (/) =/= W <-> W =/= (/) ) |
|
| 11 | lennncl | |- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
|
| 12 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 13 | 0mod | |- ( ( # ` W ) e. RR+ -> ( 0 mod ( # ` W ) ) = 0 ) |
|
| 14 | 13 | opeq1d | |- ( ( # ` W ) e. RR+ -> <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. = <. 0 , ( # ` W ) >. ) |
| 15 | 14 | oveq2d | |- ( ( # ` W ) e. RR+ -> ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
| 16 | 13 | oveq2d | |- ( ( # ` W ) e. RR+ -> ( W prefix ( 0 mod ( # ` W ) ) ) = ( W prefix 0 ) ) |
| 17 | 15 16 | oveq12d | |- ( ( # ` W ) e. RR+ -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 18 | 11 12 17 | 3syl | |- ( ( W e. Word V /\ W =/= (/) ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 19 | 10 18 | sylan2b | |- ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 20 | 9 19 | eqtrd | |- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 21 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 22 | pfxval | |- ( ( W e. Word V /\ ( # ` W ) e. NN0 ) -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
|
| 23 | 21 22 | mpdan | |- ( W e. Word V -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
| 24 | pfxid | |- ( W e. Word V -> ( W prefix ( # ` W ) ) = W ) |
|
| 25 | 23 24 | eqtr3d | |- ( W e. Word V -> ( W substr <. 0 , ( # ` W ) >. ) = W ) |
| 26 | 25 | adantr | |- ( ( W e. Word V /\ (/) =/= W ) -> ( W substr <. 0 , ( # ` W ) >. ) = W ) |
| 27 | pfx00 | |- ( W prefix 0 ) = (/) |
|
| 28 | 27 | a1i | |- ( ( W e. Word V /\ (/) =/= W ) -> ( W prefix 0 ) = (/) ) |
| 29 | 26 28 | oveq12d | |- ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) = ( W ++ (/) ) ) |
| 30 | ccatrid | |- ( W e. Word V -> ( W ++ (/) ) = W ) |
|
| 31 | 30 | adantr | |- ( ( W e. Word V /\ (/) =/= W ) -> ( W ++ (/) ) = W ) |
| 32 | 20 29 31 | 3eqtrd | |- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = W ) |
| 33 | 32 | expcom | |- ( (/) =/= W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) |
| 34 | 5 33 | pm2.61ine | |- ( W e. Word V -> ( W cyclShift 0 ) = W ) |