This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) = ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 3 | cshwfn | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 5 | cshwrn | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ran ( 𝑊 cyclShift 𝑁 ) ⊆ 𝐴 ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ran ( 𝑊 cyclShift 𝑁 ) ⊆ 𝐴 ) |
| 7 | fnco | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ran ( 𝑊 cyclShift 𝑁 ) ⊆ 𝐴 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 8 | 2 4 6 7 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 9 | wrdco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) | |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
| 11 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ℤ ) | |
| 12 | cshwfn | ⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 14 | lenco | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 17 | 16 | fneq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ↔ ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 18 | 13 17 | mpbid | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 19 | 15 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) = ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 23 | wrdfn | ⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 26 | elfzoelz | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑖 ∈ ℤ ) | |
| 27 | zaddcl | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) | |
| 28 | 26 11 27 | syl2anr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) |
| 29 | elfzo0 | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) ) | |
| 30 | 29 | simp2bi | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 32 | zmodfzo | ⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 33 | 28 31 32 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 34 | 15 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 35 | 34 | eleq1d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 37 | 33 36 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 38 | fvco2 | ⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) | |
| 39 | 25 37 38 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
| 40 | simpl1 | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝐴 ) | |
| 41 | 11 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
| 42 | simpr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 43 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 44 | 43 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 45 | 40 41 42 44 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 46 | 22 39 45 | 3eqtr4rd | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 47 | fvco2 | ⊢ ( ( ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) ) | |
| 48 | 4 47 | sylan | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) ) |
| 49 | 10 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
| 50 | 15 | eqcomd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 52 | 51 | eleq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 53 | 52 | biimpa | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
| 54 | cshwidxmod | ⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) | |
| 55 | 49 41 53 54 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
| 56 | 46 48 55 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) ‘ 𝑖 ) = ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ‘ 𝑖 ) ) |
| 57 | 8 18 56 | eqfnfvd | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) = ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ) |