This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshco | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) = ( ( F o. W ) cyclShift N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> F Fn A ) |
| 3 | cshwfn | |- ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 4 | 3 | 3adant3 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
| 5 | cshwrn | |- ( ( W e. Word A /\ N e. ZZ ) -> ran ( W cyclShift N ) C_ A ) |
|
| 6 | 5 | 3adant3 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ran ( W cyclShift N ) C_ A ) |
| 7 | fnco | |- ( ( F Fn A /\ ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) /\ ran ( W cyclShift N ) C_ A ) -> ( F o. ( W cyclShift N ) ) Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 8 | 2 4 6 7 | syl3anc | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) Fn ( 0 ..^ ( # ` W ) ) ) |
| 9 | wrdco | |- ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) e. Word B ) |
|
| 10 | 9 | 3adant2 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. W ) e. Word B ) |
| 11 | simp2 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> N e. ZZ ) |
|
| 12 | cshwfn | |- ( ( ( F o. W ) e. Word B /\ N e. ZZ ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
| 14 | lenco | |- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
|
| 15 | 14 | 3adant2 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
| 16 | 15 | oveq2d | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( 0 ..^ ( # ` ( F o. W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 17 | 16 | fneq2d | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) <-> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) ) |
| 18 | 13 17 | mpbid | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
| 19 | 15 | adantr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
| 20 | 19 | oveq2d | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
| 21 | 20 | fveq2d | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) |
| 22 | 21 | fveq2d | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) |
| 23 | wrdfn | |- ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 24 | 23 | 3ad2ant1 | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 25 | 24 | adantr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 26 | elfzoelz | |- ( i e. ( 0 ..^ ( # ` W ) ) -> i e. ZZ ) |
|
| 27 | zaddcl | |- ( ( i e. ZZ /\ N e. ZZ ) -> ( i + N ) e. ZZ ) |
|
| 28 | 26 11 27 | syl2anr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( i + N ) e. ZZ ) |
| 29 | elfzo0 | |- ( i e. ( 0 ..^ ( # ` W ) ) <-> ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) ) |
|
| 30 | 29 | simp2bi | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 31 | 30 | adantl | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
| 32 | zmodfzo | |- ( ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 33 | 28 31 32 | syl2anc | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 34 | 15 | oveq2d | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
| 35 | 34 | eleq1d | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 36 | 35 | adantr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 37 | 33 36 | mpbird | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 38 | fvco2 | |- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) ) |
|
| 39 | 25 37 38 | syl2anc | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) ) |
| 40 | simpl1 | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) |
|
| 41 | 11 | adantr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
| 42 | simpr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
|
| 43 | cshwidxmod | |- ( ( W e. Word A /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` i ) = ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) |
|
| 44 | 43 | fveq2d | |- ( ( W e. Word A /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) |
| 45 | 40 41 42 44 | syl3anc | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) |
| 46 | 22 39 45 | 3eqtr4rd | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) |
| 47 | fvco2 | |- ( ( ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( F ` ( ( W cyclShift N ) ` i ) ) ) |
|
| 48 | 4 47 | sylan | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( F ` ( ( W cyclShift N ) ` i ) ) ) |
| 49 | 10 | adantr | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F o. W ) e. Word B ) |
| 50 | 15 | eqcomd | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( # ` W ) = ( # ` ( F o. W ) ) ) |
| 51 | 50 | oveq2d | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
| 52 | 51 | eleq2d | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) ) |
| 53 | 52 | biimpa | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
| 54 | cshwidxmod | |- ( ( ( F o. W ) e. Word B /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) -> ( ( ( F o. W ) cyclShift N ) ` i ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) |
|
| 55 | 49 41 53 54 | syl3anc | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( F o. W ) cyclShift N ) ` i ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) |
| 56 | 46 48 55 | 3eqtr4d | |- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( ( ( F o. W ) cyclShift N ) ` i ) ) |
| 57 | 8 18 56 | eqfnfvd | |- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) = ( ( F o. W ) cyclShift N ) ) |