This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd ). (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| opprval.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| opprval.3 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | ||
| opprmulfval.4 | ⊢ ∙ = ( .r ‘ 𝑂 ) | ||
| Assertion | crngoppr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ∙ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | opprval.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | opprval.3 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 4 | opprmulfval.4 | ⊢ ∙ = ( .r ‘ 𝑂 ) | |
| 5 | 1 2 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 6 | 1 2 3 4 | opprmul | ⊢ ( 𝑋 ∙ 𝑌 ) = ( 𝑌 · 𝑋 ) |
| 7 | 5 6 | eqtr4di | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ∙ 𝑌 ) ) |