This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| dvdsunit.3 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | dvdsunit | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | dvdsunit.3 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | 4 2 | dvdsrtr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∥ ( 1r ‘ 𝑅 ) ) → 𝑌 ∥ ( 1r ‘ 𝑅 ) ) |
| 6 | 5 | 3expia | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑋 ) → ( 𝑋 ∥ ( 1r ‘ 𝑅 ) → 𝑌 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 7 | 3 6 | sylan | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ) → ( 𝑋 ∥ ( 1r ‘ 𝑅 ) → 𝑌 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 8 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 9 | 1 8 2 | crngunit | ⊢ ( 𝑅 ∈ CRing → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ) → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 11 | 1 8 2 | crngunit | ⊢ ( 𝑅 ∈ CRing → ( 𝑌 ∈ 𝑈 ↔ 𝑌 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ) → ( 𝑌 ∈ 𝑈 ↔ 𝑌 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 13 | 7 10 12 | 3imtr4d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ) → ( 𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |
| 14 | 13 | 3impia | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |