This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a trail <. H , Q >. . (Contributed by AV, 14-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| Assertion | crctcshtrl | ⊢ ( 𝜑 → 𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | crctcshwlk | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) |
| 9 | crctistrl | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 10 | 2 | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 11 | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) | |
| 12 | iswrdi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → 𝐹 ∈ Word dom 𝐼 ) | |
| 13 | 12 | anim1i | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) → ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
| 14 | 11 13 | sylbi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
| 15 | 3 9 10 14 | 4syl | ⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
| 16 | elfzoelz | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) | |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 18 | df-3an | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ) ∧ 𝑆 ∈ ℤ ) ) | |
| 19 | 15 17 18 | sylanbrc | ⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ) |
| 20 | cshinj | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → ( 𝐻 = ( 𝐹 cyclShift 𝑆 ) → Fun ◡ 𝐻 ) ) | |
| 21 | 19 6 20 | mpisyl | ⊢ ( 𝜑 → Fun ◡ 𝐻 ) |
| 22 | istrl | ⊢ ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄 ↔ ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄 ∧ Fun ◡ 𝐻 ) ) | |
| 23 | 8 21 22 | sylanbrc | ⊢ ( 𝜑 → 𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) |