This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a trail <. H , Q >. . (Contributed by AV, 14-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | |- V = ( Vtx ` G ) |
|
| crctcsh.i | |- I = ( iEdg ` G ) |
||
| crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
||
| crctcsh.n | |- N = ( # ` F ) |
||
| crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
||
| crctcsh.h | |- H = ( F cyclShift S ) |
||
| crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| Assertion | crctcshtrl | |- ( ph -> H ( Trails ` G ) Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | |- V = ( Vtx ` G ) |
|
| 2 | crctcsh.i | |- I = ( iEdg ` G ) |
|
| 3 | crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 4 | crctcsh.n | |- N = ( # ` F ) |
|
| 5 | crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
|
| 6 | crctcsh.h | |- H = ( F cyclShift S ) |
|
| 7 | crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | crctcshwlk | |- ( ph -> H ( Walks ` G ) Q ) |
| 9 | crctistrl | |- ( F ( Circuits ` G ) P -> F ( Trails ` G ) P ) |
|
| 10 | 2 | trlf1 | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 11 | df-f1 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) ) |
|
| 12 | iswrdi | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> F e. Word dom I ) |
|
| 13 | 12 | anim1i | |- ( ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) -> ( F e. Word dom I /\ Fun `' F ) ) |
| 14 | 11 13 | sylbi | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( F e. Word dom I /\ Fun `' F ) ) |
| 15 | 3 9 10 14 | 4syl | |- ( ph -> ( F e. Word dom I /\ Fun `' F ) ) |
| 16 | elfzoelz | |- ( S e. ( 0 ..^ N ) -> S e. ZZ ) |
|
| 17 | 5 16 | syl | |- ( ph -> S e. ZZ ) |
| 18 | df-3an | |- ( ( F e. Word dom I /\ Fun `' F /\ S e. ZZ ) <-> ( ( F e. Word dom I /\ Fun `' F ) /\ S e. ZZ ) ) |
|
| 19 | 15 17 18 | sylanbrc | |- ( ph -> ( F e. Word dom I /\ Fun `' F /\ S e. ZZ ) ) |
| 20 | cshinj | |- ( ( F e. Word dom I /\ Fun `' F /\ S e. ZZ ) -> ( H = ( F cyclShift S ) -> Fun `' H ) ) |
|
| 21 | 19 6 20 | mpisyl | |- ( ph -> Fun `' H ) |
| 22 | istrl | |- ( H ( Trails ` G ) Q <-> ( H ( Walks ` G ) Q /\ Fun `' H ) ) |
|
| 23 | 8 21 22 | sylanbrc | |- ( ph -> H ( Trails ` G ) Q ) |