This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a circuit <. H , Q >. . (Contributed by AV, 10-Mar-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| Assertion | crctcsh | ⊢ ( 𝜑 → 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 8 | 1 2 3 4 5 6 7 | crctcshlem4 | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |
| 9 | breq12 | ⊢ ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → ( 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ↔ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) ) | |
| 10 | 3 9 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) → 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) ) |
| 12 | 8 11 | mpd | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) |
| 13 | 1 2 3 4 5 6 7 | crctcshtrl | ⊢ ( 𝜑 → 𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) |
| 15 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 0 ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 16 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 + 𝑆 ) = ( 0 + 𝑆 ) ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝑥 = 0 → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 18 | 16 | fvoveq1d | ⊢ ( 𝑥 = 0 → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( ( 0 + 𝑆 ) − 𝑁 ) ) ) |
| 19 | 15 17 18 | ifbieq12d | ⊢ ( 𝑥 = 0 → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = if ( 0 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 0 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 0 + 𝑆 ) − 𝑁 ) ) ) ) |
| 20 | elfzo0le | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ≤ 𝑁 ) | |
| 21 | 5 20 | syl | ⊢ ( 𝜑 → 𝑆 ≤ 𝑁 ) |
| 22 | 1 2 3 4 | crctcshlem1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 23 | 22 | nn0red | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 24 | elfzoelz | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℤ ) | |
| 25 | 5 24 | syl | ⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 26 | 25 | zred | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 27 | 23 26 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑆 ≤ 𝑁 ) ) |
| 28 | 21 27 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 − 𝑆 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 0 ≤ ( 𝑁 − 𝑆 ) ) |
| 30 | 29 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → if ( 0 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 0 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 0 + 𝑆 ) − 𝑁 ) ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 31 | 19 30 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ≠ 0 ) ∧ 𝑥 = 0 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 32 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
| 33 | 1 2 32 4 | crctcshlem1 | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑁 ∈ ℕ0 ) |
| 34 | 0elfz | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 36 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝑃 ‘ ( 0 + 𝑆 ) ) ∈ V ) | |
| 37 | 7 31 35 36 | fvmptd2 | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 38 | breq1 | ⊢ ( 𝑥 = ( ♯ ‘ 𝐻 ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 39 | oveq1 | ⊢ ( 𝑥 = ( ♯ ‘ 𝐻 ) → ( 𝑥 + 𝑆 ) = ( ( ♯ ‘ 𝐻 ) + 𝑆 ) ) | |
| 40 | 39 | fveq2d | ⊢ ( 𝑥 = ( ♯ ‘ 𝐻 ) → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝐻 ) + 𝑆 ) ) ) |
| 41 | 39 | fvoveq1d | ⊢ ( 𝑥 = ( ♯ ‘ 𝐻 ) → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) ) |
| 42 | 38 40 41 | ifbieq12d | ⊢ ( 𝑥 = ( ♯ ‘ 𝐻 ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = if ( ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( ( ♯ ‘ 𝐻 ) + 𝑆 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) ) ) |
| 43 | elfzoel2 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 44 | elfzonn0 | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → 𝑆 ∈ ℕ0 ) | |
| 45 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) → 𝑆 ∈ ℕ0 ) | |
| 46 | 45 | anim1i | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) ∧ 𝑆 ≠ 0 ) → ( 𝑆 ∈ ℕ0 ∧ 𝑆 ≠ 0 ) ) |
| 47 | elnnne0 | ⊢ ( 𝑆 ∈ ℕ ↔ ( 𝑆 ∈ ℕ0 ∧ 𝑆 ≠ 0 ) ) | |
| 48 | 46 47 | sylibr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) ∧ 𝑆 ≠ 0 ) → 𝑆 ∈ ℕ ) |
| 49 | 48 | nngt0d | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) ∧ 𝑆 ≠ 0 ) → 0 < 𝑆 ) |
| 50 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 51 | nn0re | ⊢ ( 𝑆 ∈ ℕ0 → 𝑆 ∈ ℝ ) | |
| 52 | 50 51 | anim12ci | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) ∧ 𝑆 ≠ 0 ) → ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 54 | ltsubpos | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑆 ↔ ( 𝑁 − 𝑆 ) < 𝑁 ) ) | |
| 55 | 54 | bicomd | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑁 − 𝑆 ) < 𝑁 ↔ 0 < 𝑆 ) ) |
| 56 | 53 55 | syl | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) ∧ 𝑆 ≠ 0 ) → ( ( 𝑁 − 𝑆 ) < 𝑁 ↔ 0 < 𝑆 ) ) |
| 57 | 49 56 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) ∧ 𝑆 ≠ 0 ) → ( 𝑁 − 𝑆 ) < 𝑁 ) |
| 58 | 57 | ex | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0 ) → ( 𝑆 ≠ 0 → ( 𝑁 − 𝑆 ) < 𝑁 ) ) |
| 59 | 43 44 58 | syl2anc | ⊢ ( 𝑆 ∈ ( 0 ..^ 𝑁 ) → ( 𝑆 ≠ 0 → ( 𝑁 − 𝑆 ) < 𝑁 ) ) |
| 60 | 5 59 | syl | ⊢ ( 𝜑 → ( 𝑆 ≠ 0 → ( 𝑁 − 𝑆 ) < 𝑁 ) ) |
| 61 | 60 | imp | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝑁 − 𝑆 ) < 𝑁 ) |
| 62 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
| 63 | 1 2 32 4 62 6 | crctcshlem2 | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 64 | 63 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) ↔ 𝑁 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 65 | 64 | notbid | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ¬ ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) ↔ ¬ 𝑁 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 66 | 23 26 | resubcld | ⊢ ( 𝜑 → ( 𝑁 − 𝑆 ) ∈ ℝ ) |
| 67 | 66 23 | jca | ⊢ ( 𝜑 → ( ( 𝑁 − 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ( 𝑁 − 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 69 | ltnle | ⊢ ( ( ( 𝑁 − 𝑆 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑁 − 𝑆 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 𝑆 ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ( 𝑁 − 𝑆 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 𝑆 ) ) ) |
| 71 | 65 70 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ¬ ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) ↔ ( 𝑁 − 𝑆 ) < 𝑁 ) ) |
| 72 | 61 71 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ¬ ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) ) |
| 73 | 72 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → if ( ( ♯ ‘ 𝐻 ) ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( ( ♯ ‘ 𝐻 ) + 𝑆 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) ) |
| 74 | 42 73 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ≠ 0 ) ∧ 𝑥 = ( ♯ ‘ 𝐻 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) ) |
| 75 | 1 2 3 4 5 6 | crctcshlem2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 76 | 75 22 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℕ0 ) |
| 77 | 76 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) ∈ ℂ ) |
| 78 | 25 | zcnd | ⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 79 | 22 | nn0cnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 80 | 77 78 79 | addsubd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) = ( ( ( ♯ ‘ 𝐻 ) − 𝑁 ) + 𝑆 ) ) |
| 81 | 75 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) − 𝑁 ) = ( 𝑁 − 𝑁 ) ) |
| 82 | 79 | subidd | ⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
| 83 | 81 82 | eqtrd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐻 ) − 𝑁 ) = 0 ) |
| 84 | 83 | oveq1d | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) − 𝑁 ) + 𝑆 ) = ( 0 + 𝑆 ) ) |
| 85 | 80 84 | eqtrd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) = ( 0 + 𝑆 ) ) |
| 86 | 85 | fveq2d | ⊢ ( 𝜑 → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ≠ 0 ) ∧ 𝑥 = ( ♯ ‘ 𝐻 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐻 ) + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 89 | 74 88 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑆 ≠ 0 ) ∧ 𝑥 = ( ♯ ‘ 𝐻 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 90 | 75 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 91 | nn0fz0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) | |
| 92 | 22 91 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 94 | 90 93 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( ♯ ‘ 𝐻 ) ∈ ( 0 ... 𝑁 ) ) |
| 95 | 7 89 94 36 | fvmptd2 | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) = ( 𝑃 ‘ ( 0 + 𝑆 ) ) ) |
| 96 | 37 95 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 97 | iscrct | ⊢ ( 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ↔ ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄 ∧ ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) ) | |
| 98 | 14 96 97 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑆 ≠ 0 ) → 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) |
| 99 | 12 98 | pm2.61dane | ⊢ ( 𝜑 → 𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) |