This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshinj | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → Fun ◡ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdf | ⊢ ( 𝐹 ∈ Word 𝐴 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | |
| 2 | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ Fun ◡ 𝐹 ) ) | |
| 3 | 2 | biimpri | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ Fun ◡ 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
| 4 | 1 3 | sylan | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
| 7 | simpl3 | ⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝑆 ∈ ℤ ) | |
| 8 | simpr | ⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) | |
| 9 | cshf1 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
| 11 | 10 | ex | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) ) |
| 12 | df-f1 | ⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ Fun ◡ 𝐺 ) ) | |
| 13 | 12 | simprbi | ⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → Fun ◡ 𝐺 ) |
| 14 | 11 13 | syl6 | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → Fun ◡ 𝐺 ) ) |