This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008) (Revised by SN, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphpyth.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cphpyth.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| cphpyth.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| cphpyth.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| cphpyth.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | ||
| cphpyth.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| cphpyth.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| Assertion | cphpyth | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphpyth.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cphpyth.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | cphpyth.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | cphpyth.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 5 | cphpyth.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | |
| 6 | cphpyth.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | cphpyth.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 8 | 2 1 3 5 6 7 6 7 | cph2di | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( 𝐴 , 𝐵 ) = 0 ) | |
| 11 | 2 1 | cphorthcom | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |
| 12 | 5 6 7 11 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |
| 13 | 12 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( 𝐵 , 𝐴 ) = 0 ) |
| 14 | 10 13 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) = ( 0 + 0 ) ) |
| 15 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) = 0 ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + 0 ) ) |
| 18 | 1 2 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 19 | 5 6 6 18 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 20 | 1 2 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
| 21 | 5 7 7 20 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
| 22 | 19 21 | addcld | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ ℂ ) |
| 23 | 22 | addridd | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + 0 ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + 0 ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
| 25 | 9 17 24 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
| 26 | cphngp | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) | |
| 27 | ngpgrp | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) | |
| 28 | 5 26 27 | 3syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 29 | 1 3 28 6 7 | grpcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
| 30 | 1 2 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 + 𝐵 ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
| 31 | 5 29 30 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
| 33 | 1 2 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 34 | 5 6 33 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 35 | 1 2 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
| 36 | 5 7 35 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
| 37 | 34 36 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
| 39 | 25 32 38 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |