This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008) (Revised by SN, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphpyth.v | |- V = ( Base ` W ) |
|
| cphpyth.h | |- ., = ( .i ` W ) |
||
| cphpyth.p | |- .+ = ( +g ` W ) |
||
| cphpyth.n | |- N = ( norm ` W ) |
||
| cphpyth.w | |- ( ph -> W e. CPreHil ) |
||
| cphpyth.a | |- ( ph -> A e. V ) |
||
| cphpyth.b | |- ( ph -> B e. V ) |
||
| Assertion | cphpyth | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphpyth.v | |- V = ( Base ` W ) |
|
| 2 | cphpyth.h | |- ., = ( .i ` W ) |
|
| 3 | cphpyth.p | |- .+ = ( +g ` W ) |
|
| 4 | cphpyth.n | |- N = ( norm ` W ) |
|
| 5 | cphpyth.w | |- ( ph -> W e. CPreHil ) |
|
| 6 | cphpyth.a | |- ( ph -> A e. V ) |
|
| 7 | cphpyth.b | |- ( ph -> B e. V ) |
|
| 8 | 2 1 3 5 6 7 6 7 | cph2di | |- ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 10 | simpr | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( A ., B ) = 0 ) |
|
| 11 | 2 1 | cphorthcom | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |
| 12 | 5 6 7 11 | syl3anc | |- ( ph -> ( ( A ., B ) = 0 <-> ( B ., A ) = 0 ) ) |
| 13 | 12 | biimpa | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( B ., A ) = 0 ) |
| 14 | 10 13 | oveq12d | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A ., B ) + ( B ., A ) ) = ( 0 + 0 ) ) |
| 15 | 00id | |- ( 0 + 0 ) = 0 |
|
| 16 | 14 15 | eqtrdi | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A ., B ) + ( B ., A ) ) = 0 ) |
| 17 | 16 | oveq2d | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + 0 ) ) |
| 18 | 1 2 | cphipcl | |- ( ( W e. CPreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. CC ) |
| 19 | 5 6 6 18 | syl3anc | |- ( ph -> ( A ., A ) e. CC ) |
| 20 | 1 2 | cphipcl | |- ( ( W e. CPreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. CC ) |
| 21 | 5 7 7 20 | syl3anc | |- ( ph -> ( B ., B ) e. CC ) |
| 22 | 19 21 | addcld | |- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) |
| 23 | 22 | addridd | |- ( ph -> ( ( ( A ., A ) + ( B ., B ) ) + 0 ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( A ., A ) + ( B ., B ) ) + 0 ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 25 | 9 17 24 | 3eqtrd | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 26 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 27 | ngpgrp | |- ( W e. NrmGrp -> W e. Grp ) |
|
| 28 | 5 26 27 | 3syl | |- ( ph -> W e. Grp ) |
| 29 | 1 3 28 6 7 | grpcld | |- ( ph -> ( A .+ B ) e. V ) |
| 30 | 1 2 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 31 | 5 29 30 | syl2anc | |- ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 33 | 1 2 4 | nmsq | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| 34 | 5 6 33 | syl2anc | |- ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| 35 | 1 2 4 | nmsq | |- ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
| 36 | 5 7 35 | syl2anc | |- ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
| 37 | 34 36 | oveq12d | |- ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 38 | 37 | adantr | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 39 | 25 32 38 | 3eqtr4d | |- ( ( ph /\ ( A ., B ) = 0 ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |