This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | cphorthcom | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | 4 1 2 5 | iporthcom | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐵 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 7 | 3 6 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐵 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 8 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 9 | 4 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | 8 9 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 | 11 | eqeq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐴 , 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 13 | 11 | eqeq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐵 , 𝐴 ) = 0 ↔ ( 𝐵 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 14 | 7 12 13 | 3bitr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |