This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphbas and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tcphex.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| Assertion | tcphex | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphex.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) | |
| 3 | fvrn0 | ⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) | |
| 4 | 3 | a1i | ⊢ ( 𝑥 ∈ 𝑉 → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) ) |
| 5 | 2 4 | fmpti | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) |
| 6 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 7 | cnex | ⊢ ℂ ∈ V | |
| 8 | sqrtf | ⊢ √ : ℂ ⟶ ℂ | |
| 9 | frn | ⊢ ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ ) | |
| 10 | 8 9 | ax-mp | ⊢ ran √ ⊆ ℂ |
| 11 | 7 10 | ssexi | ⊢ ran √ ∈ V |
| 12 | p0ex | ⊢ { ∅ } ∈ V | |
| 13 | 11 12 | unex | ⊢ ( ran √ ∪ { ∅ } ) ∈ V |
| 14 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) ∧ 𝑉 ∈ V ∧ ( ran √ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V ) | |
| 15 | 5 6 13 14 | mp3an | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V |