This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. See ipass , his5 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphass.f | |- F = ( Scalar ` W ) |
||
| cphass.k | |- K = ( Base ` F ) |
||
| cphass.s | |- .x. = ( .s ` W ) |
||
| Assertion | cphass | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A x. ( B ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphass.f | |- F = ( Scalar ` W ) |
|
| 4 | cphass.k | |- K = ( Base ` F ) |
|
| 5 | cphass.s | |- .x. = ( .s ` W ) |
|
| 6 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 7 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 8 | 3 1 2 4 5 7 | ipass | |- ( ( W e. PreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A ( .r ` F ) ( B ., C ) ) ) |
| 9 | 6 8 | sylan | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A ( .r ` F ) ( B ., C ) ) ) |
| 10 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 11 | 3 | clmmul | |- ( W e. CMod -> x. = ( .r ` F ) ) |
| 12 | 10 11 | syl | |- ( W e. CPreHil -> x. = ( .r ` F ) ) |
| 13 | 12 | adantr | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> x. = ( .r ` F ) ) |
| 14 | 13 | oveqd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( A x. ( B ., C ) ) = ( A ( .r ` F ) ( B ., C ) ) ) |
| 15 | 9 14 | eqtr4d | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( A .x. B ) ., C ) = ( A x. ( B ., C ) ) ) |