This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 23-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosq34lt1 | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire | ⊢ π ∈ ℝ | |
| 2 | 2re | ⊢ 2 ∈ ℝ | |
| 3 | 2 1 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 4 | 3 | rexri | ⊢ ( 2 · π ) ∈ ℝ* |
| 5 | elico2 | ⊢ ( ( π ∈ ℝ ∧ ( 2 · π ) ∈ ℝ* ) → ( 𝐴 ∈ ( π [,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ π ≤ 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) ) | |
| 6 | 1 4 5 | mp2an | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ π ≤ 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) |
| 7 | 6 | simp1bi | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 𝐴 ∈ ℝ ) |
| 8 | 0red | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 0 ∈ ℝ ) | |
| 9 | 1 | a1i | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → π ∈ ℝ ) |
| 10 | pipos | ⊢ 0 < π | |
| 11 | 10 | a1i | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 0 < π ) |
| 12 | 6 | simp2bi | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → π ≤ 𝐴 ) |
| 13 | 8 9 7 11 12 | ltletrd | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 0 < 𝐴 ) |
| 14 | 6 | simp3bi | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 𝐴 < ( 2 · π ) ) |
| 15 | 0xr | ⊢ 0 ∈ ℝ* | |
| 16 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( 2 · π ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) ) | |
| 17 | 15 4 16 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) |
| 18 | 7 13 14 17 | syl3anbrc | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ) |
| 19 | cos02pilt1 | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ ( π [,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |