This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a real number lies between -1 and 1. Equation 18 of Gleason p. 311. (Contributed by NM, 16-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosbnd | ⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resincl | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | sqge0d | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( sin ‘ 𝐴 ) ↑ 2 ) ) |
| 3 | recoscl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | resqcld | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 5 | 1 | resqcld | ⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 6 | 4 5 | addge02d | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ ( ( sin ‘ 𝐴 ) ↑ 2 ) ↔ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 7 | 2 6 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 8 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 9 | sincossq | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 11 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 12 | 10 11 | eqtr4di | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( 1 ↑ 2 ) ) |
| 13 | 7 12 | breqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 14 | 1re | ⊢ 1 ∈ ℝ | |
| 15 | 0le1 | ⊢ 0 ≤ 1 | |
| 16 | lenegsq | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - ( cos ‘ 𝐴 ) ≤ 1 ) ↔ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) | |
| 17 | 14 15 16 | mp3an23 | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - ( cos ‘ 𝐴 ) ≤ 1 ) ↔ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 18 | lenegcon1 | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( - ( cos ‘ 𝐴 ) ≤ 1 ↔ - 1 ≤ ( cos ‘ 𝐴 ) ) ) | |
| 19 | 14 18 | mpan2 | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( - ( cos ‘ 𝐴 ) ≤ 1 ↔ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - ( cos ‘ 𝐴 ) ≤ 1 ) ↔ ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) ) |
| 21 | 17 20 | bitr3d | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ↔ ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) ) |
| 22 | 3 21 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ↔ ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) ) |
| 23 | 13 22 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
| 24 | 23 | ancomd | ⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) |