This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | |- X = ( Base ` G ) |
|
| conjghm.p | |- .+ = ( +g ` G ) |
||
| conjghm.m | |- .- = ( -g ` G ) |
||
| conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
||
| conjnmz.1 | |- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
||
| Assertion | conjnmz | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | |- X = ( Base ` G ) |
|
| 2 | conjghm.p | |- .+ = ( +g ` G ) |
|
| 3 | conjghm.m | |- .- = ( -g ` G ) |
|
| 4 | conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
|
| 5 | conjnmz.1 | |- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
|
| 6 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 7 | 6 | ad2antrr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> G e. Grp ) |
| 8 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 9 | 5 | ssrab3 | |- N C_ X |
| 10 | simplr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> A e. N ) |
|
| 11 | 9 10 | sselid | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> A e. X ) |
| 12 | 1 8 7 11 | grpinvcld | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( invg ` G ) ` A ) e. X ) |
| 13 | 1 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 14 | 13 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S C_ X ) |
| 15 | 14 | sselda | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. X ) |
| 16 | 1 2 7 12 15 11 | grpassd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) |
| 17 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 18 | 1 2 17 8 7 11 | grprinvd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( invg ` G ) ` A ) ) = ( 0g ` G ) ) |
| 19 | 18 | oveq1d | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ w ) = ( ( 0g ` G ) .+ w ) ) |
| 20 | 1 2 7 11 12 15 | grpassd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ w ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) ) |
| 21 | 1 2 17 7 15 | grplidd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( 0g ` G ) .+ w ) = w ) |
| 22 | 19 20 21 | 3eqtr3d | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) = w ) |
| 23 | simpr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. S ) |
|
| 24 | 22 23 | eqeltrd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S ) |
| 25 | 1 2 7 12 15 | grpcld | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( invg ` G ) ` A ) .+ w ) e. X ) |
| 26 | 5 | nmzbi | |- ( ( A e. N /\ ( ( ( invg ` G ) ` A ) .+ w ) e. X ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S <-> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) ) |
| 27 | 10 25 26 | syl2anc | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S <-> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) ) |
| 28 | 24 27 | mpbid | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) |
| 29 | 16 28 | eqeltrrd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S ) |
| 30 | oveq2 | |- ( x = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) -> ( A .+ x ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) ) |
|
| 31 | 30 | oveq1d | |- ( x = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) -> ( ( A .+ x ) .- A ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) |
| 32 | ovex | |- ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) e. _V |
|
| 33 | 31 4 32 | fvmpt | |- ( ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) |
| 34 | 29 33 | syl | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) |
| 35 | 18 | oveq1d | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ ( w .+ A ) ) = ( ( 0g ` G ) .+ ( w .+ A ) ) ) |
| 36 | 1 2 7 15 11 | grpcld | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( w .+ A ) e. X ) |
| 37 | 1 2 7 11 12 36 | grpassd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ ( w .+ A ) ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) ) |
| 38 | 1 2 17 7 36 | grplidd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( 0g ` G ) .+ ( w .+ A ) ) = ( w .+ A ) ) |
| 39 | 35 37 38 | 3eqtr3d | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( w .+ A ) ) |
| 40 | 39 | oveq1d | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) = ( ( w .+ A ) .- A ) ) |
| 41 | 1 2 3 | grppncan | |- ( ( G e. Grp /\ w e. X /\ A e. X ) -> ( ( w .+ A ) .- A ) = w ) |
| 42 | 7 15 11 41 | syl3anc | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( w .+ A ) .- A ) = w ) |
| 43 | 34 40 42 | 3eqtrd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = w ) |
| 44 | ovex | |- ( ( A .+ x ) .- A ) e. _V |
|
| 45 | 44 4 | fnmpti | |- F Fn S |
| 46 | fnfvelrn | |- ( ( F Fn S /\ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) e. ran F ) |
|
| 47 | 45 29 46 | sylancr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) e. ran F ) |
| 48 | 43 47 | eqeltrrd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. ran F ) |
| 49 | 48 | ex | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( w e. S -> w e. ran F ) ) |
| 50 | 49 | ssrdv | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S C_ ran F ) |
| 51 | 6 | ad2antrr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> G e. Grp ) |
| 52 | simplr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> A e. N ) |
|
| 53 | 9 52 | sselid | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> A e. X ) |
| 54 | 14 | sselda | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> x e. X ) |
| 55 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 56 | 51 53 54 53 55 | syl13anc | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 57 | 1 2 3 | grpnpcan | |- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( ( x .- A ) .+ A ) = x ) |
| 58 | 51 54 53 57 | syl3anc | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( x .- A ) .+ A ) = x ) |
| 59 | simpr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> x e. S ) |
|
| 60 | 58 59 | eqeltrd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( x .- A ) .+ A ) e. S ) |
| 61 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) |
| 62 | 51 54 53 61 | syl3anc | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( x .- A ) e. X ) |
| 63 | 5 | nmzbi | |- ( ( A e. N /\ ( x .- A ) e. X ) -> ( ( A .+ ( x .- A ) ) e. S <-> ( ( x .- A ) .+ A ) e. S ) ) |
| 64 | 52 62 63 | syl2anc | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) e. S <-> ( ( x .- A ) .+ A ) e. S ) ) |
| 65 | 60 64 | mpbird | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( A .+ ( x .- A ) ) e. S ) |
| 66 | 56 65 | eqeltrd | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ x ) .- A ) e. S ) |
| 67 | 66 4 | fmptd | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> F : S --> S ) |
| 68 | 67 | frnd | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ran F C_ S ) |
| 69 | 50 68 | eqssd | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |