This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sub.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| coe1sub.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| coe1sub.p | ⊢ − = ( -g ‘ 𝑌 ) | ||
| coe1sub.q | ⊢ 𝑁 = ( -g ‘ 𝑅 ) | ||
| Assertion | coe1subfv | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sub.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1sub.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | coe1sub.p | ⊢ − = ( -g ‘ 𝑌 ) | |
| 4 | coe1sub.q | ⊢ 𝑁 = ( -g ‘ 𝑅 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑅 ∈ Ring ) | |
| 6 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
| 7 | ringgrp | ⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Grp ) |
| 9 | 2 3 | grpsubcl | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
| 10 | 8 9 | syl3an1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
| 12 | simpl3 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝐺 ∈ 𝐵 ) | |
| 13 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 15 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 16 | 1 2 14 15 | coe1addfv | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹 − 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 17 | 5 11 12 13 16 | syl31anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 18 | 8 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑌 ∈ Grp ) |
| 20 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝐹 ∈ 𝐵 ) | |
| 21 | 2 14 3 | grpnpcan | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) = 𝐹 ) |
| 22 | 19 20 12 21 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) = 𝐹 ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) = ( coe1 ‘ 𝐹 ) ) |
| 24 | 23 | fveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 25 | 17 24 | eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 26 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
| 29 | eqid | ⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) | |
| 30 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 31 | 29 2 1 30 | coe1f | ⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | eqid | ⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) | |
| 35 | 34 2 1 30 | coe1f | ⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 37 | 36 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 | eqid | ⊢ ( coe1 ‘ ( 𝐹 − 𝐺 ) ) = ( coe1 ‘ ( 𝐹 − 𝐺 ) ) | |
| 39 | 38 2 1 30 | coe1f | ⊢ ( ( 𝐹 − 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 − 𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 40 | 10 39 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 − 𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 42 | 30 15 4 | grpsubadd | ⊢ ( ( 𝑅 ∈ Grp ∧ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ↔ ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 43 | 28 33 37 41 42 | syl13anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ↔ ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 44 | 25 43 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ) |
| 45 | 44 | eqcomd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |