This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sub.y | |- Y = ( Poly1 ` R ) |
|
| coe1sub.b | |- B = ( Base ` Y ) |
||
| coe1sub.p | |- .- = ( -g ` Y ) |
||
| coe1sub.q | |- N = ( -g ` R ) |
||
| Assertion | coe1subfv | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .- G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sub.y | |- Y = ( Poly1 ` R ) |
|
| 2 | coe1sub.b | |- B = ( Base ` Y ) |
|
| 3 | coe1sub.p | |- .- = ( -g ` Y ) |
|
| 4 | coe1sub.q | |- N = ( -g ` R ) |
|
| 5 | simpl1 | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> R e. Ring ) |
|
| 6 | 1 | ply1ring | |- ( R e. Ring -> Y e. Ring ) |
| 7 | ringgrp | |- ( Y e. Ring -> Y e. Grp ) |
|
| 8 | 6 7 | syl | |- ( R e. Ring -> Y e. Grp ) |
| 9 | 2 3 | grpsubcl | |- ( ( Y e. Grp /\ F e. B /\ G e. B ) -> ( F .- G ) e. B ) |
| 10 | 8 9 | syl3an1 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .- G ) e. B ) |
| 11 | 10 | adantr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( F .- G ) e. B ) |
| 12 | simpl3 | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> G e. B ) |
|
| 13 | simpr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> X e. NN0 ) |
|
| 14 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 15 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 16 | 1 2 14 15 | coe1addfv | |- ( ( ( R e. Ring /\ ( F .- G ) e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) ` X ) = ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) ) |
| 17 | 5 11 12 13 16 | syl31anc | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) ` X ) = ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) ) |
| 18 | 8 | 3ad2ant1 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> Y e. Grp ) |
| 19 | 18 | adantr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> Y e. Grp ) |
| 20 | simpl2 | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> F e. B ) |
|
| 21 | 2 14 3 | grpnpcan | |- ( ( Y e. Grp /\ F e. B /\ G e. B ) -> ( ( F .- G ) ( +g ` Y ) G ) = F ) |
| 22 | 19 20 12 21 | syl3anc | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( F .- G ) ( +g ` Y ) G ) = F ) |
| 23 | 22 | fveq2d | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) = ( coe1 ` F ) ) |
| 24 | 23 | fveq1d | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( ( F .- G ) ( +g ` Y ) G ) ) ` X ) = ( ( coe1 ` F ) ` X ) ) |
| 25 | 17 24 | eqtr3d | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` F ) ` X ) ) |
| 26 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 27 | 26 | 3ad2ant1 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> R e. Grp ) |
| 28 | 27 | adantr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> R e. Grp ) |
| 29 | eqid | |- ( coe1 ` F ) = ( coe1 ` F ) |
|
| 30 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 31 | 29 2 1 30 | coe1f | |- ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
| 32 | 31 | 3ad2ant2 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
| 33 | 32 | ffvelcdmda | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` F ) ` X ) e. ( Base ` R ) ) |
| 34 | eqid | |- ( coe1 ` G ) = ( coe1 ` G ) |
|
| 35 | 34 2 1 30 | coe1f | |- ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
| 36 | 35 | 3ad2ant3 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
| 37 | 36 | ffvelcdmda | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` G ) ` X ) e. ( Base ` R ) ) |
| 38 | eqid | |- ( coe1 ` ( F .- G ) ) = ( coe1 ` ( F .- G ) ) |
|
| 39 | 38 2 1 30 | coe1f | |- ( ( F .- G ) e. B -> ( coe1 ` ( F .- G ) ) : NN0 --> ( Base ` R ) ) |
| 40 | 10 39 | syl | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .- G ) ) : NN0 --> ( Base ` R ) ) |
| 41 | 40 | ffvelcdmda | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .- G ) ) ` X ) e. ( Base ` R ) ) |
| 42 | 30 15 4 | grpsubadd | |- ( ( R e. Grp /\ ( ( ( coe1 ` F ) ` X ) e. ( Base ` R ) /\ ( ( coe1 ` G ) ` X ) e. ( Base ` R ) /\ ( ( coe1 ` ( F .- G ) ) ` X ) e. ( Base ` R ) ) ) -> ( ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` ( F .- G ) ) ` X ) <-> ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` F ) ` X ) ) ) |
| 43 | 28 33 37 41 42 | syl13anc | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` ( F .- G ) ) ` X ) <-> ( ( ( coe1 ` ( F .- G ) ) ` X ) ( +g ` R ) ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` F ) ` X ) ) ) |
| 44 | 25 43 | mpbird | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) = ( ( coe1 ` ( F .- G ) ) ` X ) ) |
| 45 | 44 | eqcomd | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .- G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) N ( ( coe1 ` G ) ` X ) ) ) |