This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1pwmul.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1pwmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1pwmul.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1pwmul.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1pwmul.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| coe1pwmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1pwmul.t | ⊢ · = ( .r ‘ 𝑃 ) | ||
| coe1pwmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1pwmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| coe1pwmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | ||
| Assertion | coe1pwmul | ⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1pwmul.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1pwmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | coe1pwmul.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 4 | coe1pwmul.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 5 | coe1pwmul.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 6 | coe1pwmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 7 | coe1pwmul.t | ⊢ · = ( .r ‘ 𝑃 ) | |
| 8 | coe1pwmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 9 | coe1pwmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 10 | coe1pwmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 15 | 11 14 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 8 15 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 1 11 2 3 12 4 5 6 7 13 9 8 16 10 | coe1tmmul | ⊢ ( 𝜑 → ( coe1 ‘ ( ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) · 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) |
| 18 | 2 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 19 | 8 18 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) ) |
| 22 | 2 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 23 | 8 22 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 24 | 4 6 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑁 ) |
| 25 | 2 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 26 | 4 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd ) |
| 27 | 8 25 26 | 3syl | ⊢ ( 𝜑 → 𝑁 ∈ Mnd ) |
| 28 | 3 2 6 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 29 | 8 28 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 30 | 24 5 27 10 29 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
| 31 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 32 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) | |
| 33 | 6 31 12 32 | lmodvs1 | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( 𝐷 ↑ 𝑋 ) ) |
| 34 | 23 30 33 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( 𝐷 ↑ 𝑋 ) ) |
| 35 | 21 34 | eqtrd | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) = ( 𝐷 ↑ 𝑋 ) ) |
| 36 | 35 | fvoveq1d | ⊢ ( 𝜑 → ( coe1 ‘ ( ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐷 ↑ 𝑋 ) ) · 𝐴 ) ) = ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) ) |
| 37 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝑅 ∈ Ring ) |
| 38 | eqid | ⊢ ( coe1 ‘ 𝐴 ) = ( coe1 ‘ 𝐴 ) | |
| 39 | 38 6 2 11 | coe1f | ⊢ ( 𝐴 ∈ 𝐵 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 40 | 9 39 | syl | ⊢ ( 𝜑 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 42 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ∈ ℕ0 ) |
| 43 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝑥 ∈ ℕ0 ) | |
| 44 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ≤ 𝑥 ) | |
| 45 | nn0sub2 | ⊢ ( ( 𝐷 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) → ( 𝑥 − 𝐷 ) ∈ ℕ0 ) | |
| 46 | 42 43 44 45 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝑥 − 𝐷 ) ∈ ℕ0 ) |
| 47 | 41 46 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 48 | 11 13 14 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) = ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) |
| 49 | 37 47 48 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) = ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) |
| 50 | 49 | ifeq1da | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → if ( 𝐷 ≤ 𝑥 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) = if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) |
| 51 | 50 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ) |
| 52 | 17 36 51 | 3eqtr3d | ⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ) |