This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1pwmul.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1pwmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1pwmul.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1pwmul.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1pwmul.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| coe1pwmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1pwmul.t | ⊢ · = ( .r ‘ 𝑃 ) | ||
| coe1pwmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1pwmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| coe1pwmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | ||
| coe1pwmulfv.y | ⊢ ( 𝜑 → 𝑌 ∈ ℕ0 ) | ||
| Assertion | coe1pwmulfv | ⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) ‘ ( 𝐷 + 𝑌 ) ) = ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1pwmul.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1pwmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | coe1pwmul.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 4 | coe1pwmul.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 5 | coe1pwmul.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 6 | coe1pwmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 7 | coe1pwmul.t | ⊢ · = ( .r ‘ 𝑃 ) | |
| 8 | coe1pwmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 9 | coe1pwmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 10 | coe1pwmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | |
| 11 | coe1pwmulfv.y | ⊢ ( 𝜑 → 𝑌 ∈ ℕ0 ) | |
| 12 | 1 2 3 4 5 6 7 8 9 10 | coe1pwmul | ⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) ‘ ( 𝐷 + 𝑌 ) ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ‘ ( 𝐷 + 𝑌 ) ) ) |
| 14 | 10 11 | nn0addcld | ⊢ ( 𝜑 → ( 𝐷 + 𝑌 ) ∈ ℕ0 ) |
| 15 | breq2 | ⊢ ( 𝑥 = ( 𝐷 + 𝑌 ) → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ ( 𝐷 + 𝑌 ) ) ) | |
| 16 | fvoveq1 | ⊢ ( 𝑥 = ( 𝐷 + 𝑌 ) → ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) = ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) ) | |
| 17 | 15 16 | ifbieq1d | ⊢ ( 𝑥 = ( 𝐷 + 𝑌 ) → if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) = if ( 𝐷 ≤ ( 𝐷 + 𝑌 ) , ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) , 0 ) ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) | |
| 19 | fvex | ⊢ ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) ∈ V | |
| 20 | 1 | fvexi | ⊢ 0 ∈ V |
| 21 | 19 20 | ifex | ⊢ if ( 𝐷 ≤ ( 𝐷 + 𝑌 ) , ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) , 0 ) ∈ V |
| 22 | 17 18 21 | fvmpt | ⊢ ( ( 𝐷 + 𝑌 ) ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ‘ ( 𝐷 + 𝑌 ) ) = if ( 𝐷 ≤ ( 𝐷 + 𝑌 ) , ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) , 0 ) ) |
| 23 | 14 22 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ‘ ( 𝐷 + 𝑌 ) ) = if ( 𝐷 ≤ ( 𝐷 + 𝑌 ) , ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) , 0 ) ) |
| 24 | 10 | nn0red | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 25 | nn0addge1 | ⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0 ) → 𝐷 ≤ ( 𝐷 + 𝑌 ) ) | |
| 26 | 24 11 25 | syl2anc | ⊢ ( 𝜑 → 𝐷 ≤ ( 𝐷 + 𝑌 ) ) |
| 27 | 26 | iftrued | ⊢ ( 𝜑 → if ( 𝐷 ≤ ( 𝐷 + 𝑌 ) , ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) , 0 ) = ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) ) |
| 28 | 10 | nn0cnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 29 | 11 | nn0cnd | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 30 | 28 29 | pncan2d | ⊢ ( 𝜑 → ( ( 𝐷 + 𝑌 ) − 𝐷 ) = 𝑌 ) |
| 31 | 30 | fveq2d | ⊢ ( 𝜑 → ( ( coe1 ‘ 𝐴 ) ‘ ( ( 𝐷 + 𝑌 ) − 𝐷 ) ) = ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 ) ) |
| 32 | 23 27 31 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) , 0 ) ) ‘ ( 𝐷 + 𝑌 ) ) = ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 ) ) |
| 33 | 13 32 | eqtrd | ⊢ ( 𝜑 → ( ( coe1 ‘ ( ( 𝐷 ↑ 𝑋 ) · 𝐴 ) ) ‘ ( 𝐷 + 𝑌 ) ) = ( ( coe1 ‘ 𝐴 ) ‘ 𝑌 ) ) |