This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1z.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| coe1z.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| coe1z.y | ⊢ 𝑌 = ( 0g ‘ 𝑅 ) | ||
| Assertion | coe1z | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 0 ) = ( ℕ0 × { 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1z.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1z.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 3 | coe1z.y | ⊢ 𝑌 = ( 0g ‘ 𝑅 ) | |
| 4 | fconst6g | ⊢ ( 𝑎 ∈ ℕ0 → ( 1o × { 𝑎 } ) : 1o ⟶ ℕ0 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0 ) → ( 1o × { 𝑎 } ) : 1o ⟶ ℕ0 ) |
| 6 | nn0ex | ⊢ ℕ0 ∈ V | |
| 7 | 1oex | ⊢ 1o ∈ V | |
| 8 | 6 7 | elmap | ⊢ ( ( 1o × { 𝑎 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑎 } ) : 1o ⟶ ℕ0 ) |
| 9 | 5 8 | sylibr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ ℕ0 ) → ( 1o × { 𝑎 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 10 | eqidd | ⊢ ( 𝑅 ∈ Ring → ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) = ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) | |
| 11 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 12 | psr1baslem | ⊢ ( ℕ0 ↑m 1o ) = { 𝑐 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑐 “ ℕ ) ∈ Fin } | |
| 13 | 11 1 2 | ply1mpl0 | ⊢ 0 = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
| 14 | 1on | ⊢ 1o ∈ On | |
| 15 | 14 | a1i | ⊢ ( 𝑅 ∈ Ring → 1o ∈ On ) |
| 16 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 17 | 11 12 3 13 15 16 | mpl0 | ⊢ ( 𝑅 ∈ Ring → 0 = ( ( ℕ0 ↑m 1o ) × { 𝑌 } ) ) |
| 18 | fconstmpt | ⊢ ( ( ℕ0 ↑m 1o ) × { 𝑌 } ) = ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ 𝑌 ) | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝑅 ∈ Ring → 0 = ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ 𝑌 ) ) |
| 20 | eqidd | ⊢ ( 𝑏 = ( 1o × { 𝑎 } ) → 𝑌 = 𝑌 ) | |
| 21 | 9 10 19 20 | fmptco | ⊢ ( 𝑅 ∈ Ring → ( 0 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( 𝑎 ∈ ℕ0 ↦ 𝑌 ) ) |
| 22 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 24 | 23 2 | ring0cl | ⊢ ( 𝑃 ∈ Ring → 0 ∈ ( Base ‘ 𝑃 ) ) |
| 25 | eqid | ⊢ ( coe1 ‘ 0 ) = ( coe1 ‘ 0 ) | |
| 26 | eqid | ⊢ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) = ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) | |
| 27 | 25 23 1 26 | coe1fval2 | ⊢ ( 0 ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ 0 ) = ( 0 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 28 | 22 24 27 | 3syl | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 0 ) = ( 0 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 29 | fconstmpt | ⊢ ( ℕ0 × { 𝑌 } ) = ( 𝑎 ∈ ℕ0 ↦ 𝑌 ) | |
| 30 | 29 | a1i | ⊢ ( 𝑅 ∈ Ring → ( ℕ0 × { 𝑌 } ) = ( 𝑎 ∈ ℕ0 ↦ 𝑌 ) ) |
| 31 | 21 28 30 | 3eqtr4d | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 0 ) = ( ℕ0 × { 𝑌 } ) ) |