This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvunop | |- ( T e. UniOp -> `' T e. UniOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | |- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
|
| 2 | f1ocnv | |- ( T : ~H -1-1-onto-> ~H -> `' T : ~H -1-1-onto-> ~H ) |
|
| 3 | f1ofo | |- ( `' T : ~H -1-1-onto-> ~H -> `' T : ~H -onto-> ~H ) |
|
| 4 | 2 3 | syl | |- ( T : ~H -1-1-onto-> ~H -> `' T : ~H -onto-> ~H ) |
| 5 | 1 4 | syl | |- ( T e. UniOp -> `' T : ~H -onto-> ~H ) |
| 6 | simpl | |- ( ( T e. UniOp /\ ( x e. ~H /\ y e. ~H ) ) -> T e. UniOp ) |
|
| 7 | fof | |- ( `' T : ~H -onto-> ~H -> `' T : ~H --> ~H ) |
|
| 8 | 5 7 | syl | |- ( T e. UniOp -> `' T : ~H --> ~H ) |
| 9 | 8 | ffvelcdmda | |- ( ( T e. UniOp /\ x e. ~H ) -> ( `' T ` x ) e. ~H ) |
| 10 | 9 | adantrr | |- ( ( T e. UniOp /\ ( x e. ~H /\ y e. ~H ) ) -> ( `' T ` x ) e. ~H ) |
| 11 | 8 | ffvelcdmda | |- ( ( T e. UniOp /\ y e. ~H ) -> ( `' T ` y ) e. ~H ) |
| 12 | 11 | adantrl | |- ( ( T e. UniOp /\ ( x e. ~H /\ y e. ~H ) ) -> ( `' T ` y ) e. ~H ) |
| 13 | unop | |- ( ( T e. UniOp /\ ( `' T ` x ) e. ~H /\ ( `' T ` y ) e. ~H ) -> ( ( T ` ( `' T ` x ) ) .ih ( T ` ( `' T ` y ) ) ) = ( ( `' T ` x ) .ih ( `' T ` y ) ) ) |
|
| 14 | 6 10 12 13 | syl3anc | |- ( ( T e. UniOp /\ ( x e. ~H /\ y e. ~H ) ) -> ( ( T ` ( `' T ` x ) ) .ih ( T ` ( `' T ` y ) ) ) = ( ( `' T ` x ) .ih ( `' T ` y ) ) ) |
| 15 | f1ocnvfv2 | |- ( ( T : ~H -1-1-onto-> ~H /\ x e. ~H ) -> ( T ` ( `' T ` x ) ) = x ) |
|
| 16 | 15 | adantrr | |- ( ( T : ~H -1-1-onto-> ~H /\ ( x e. ~H /\ y e. ~H ) ) -> ( T ` ( `' T ` x ) ) = x ) |
| 17 | f1ocnvfv2 | |- ( ( T : ~H -1-1-onto-> ~H /\ y e. ~H ) -> ( T ` ( `' T ` y ) ) = y ) |
|
| 18 | 17 | adantrl | |- ( ( T : ~H -1-1-onto-> ~H /\ ( x e. ~H /\ y e. ~H ) ) -> ( T ` ( `' T ` y ) ) = y ) |
| 19 | 16 18 | oveq12d | |- ( ( T : ~H -1-1-onto-> ~H /\ ( x e. ~H /\ y e. ~H ) ) -> ( ( T ` ( `' T ` x ) ) .ih ( T ` ( `' T ` y ) ) ) = ( x .ih y ) ) |
| 20 | 1 19 | sylan | |- ( ( T e. UniOp /\ ( x e. ~H /\ y e. ~H ) ) -> ( ( T ` ( `' T ` x ) ) .ih ( T ` ( `' T ` y ) ) ) = ( x .ih y ) ) |
| 21 | 14 20 | eqtr3d | |- ( ( T e. UniOp /\ ( x e. ~H /\ y e. ~H ) ) -> ( ( `' T ` x ) .ih ( `' T ` y ) ) = ( x .ih y ) ) |
| 22 | 21 | ralrimivva | |- ( T e. UniOp -> A. x e. ~H A. y e. ~H ( ( `' T ` x ) .ih ( `' T ` y ) ) = ( x .ih y ) ) |
| 23 | elunop | |- ( `' T e. UniOp <-> ( `' T : ~H -onto-> ~H /\ A. x e. ~H A. y e. ~H ( ( `' T ` x ) .ih ( `' T ` y ) ) = ( x .ih y ) ) ) |
|
| 24 | 5 22 23 | sylanbrc | |- ( T e. UniOp -> `' T e. UniOp ) |