This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnaddabl . Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnaddabloOLD | ⊢ + ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | ax-addf | ⊢ + : ( ℂ × ℂ ) ⟶ ℂ | |
| 3 | addass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 4 | 0cn | ⊢ 0 ∈ ℂ | |
| 5 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 6 | negcl | ⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) | |
| 7 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) | |
| 8 | 6 7 | mpdan | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
| 9 | negid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) | |
| 10 | 8 9 | eqtr3d | ⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
| 11 | 1 2 3 4 5 6 10 | isgrpoi | ⊢ + ∈ GrpOp |
| 12 | 2 | fdmi | ⊢ dom + = ( ℂ × ℂ ) |
| 13 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 14 | 11 12 13 | isabloi | ⊢ + ∈ AbelOp |