This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cncvs . The set of complex numbers is a complex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncvcOLD | ⊢ 〈 + , · 〉 ∈ CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD | ⊢ + ∈ AbelOp | |
| 2 | ax-addf | ⊢ + : ( ℂ × ℂ ) ⟶ ℂ | |
| 3 | 2 | fdmi | ⊢ dom + = ( ℂ × ℂ ) |
| 4 | ax-mulf | ⊢ · : ( ℂ × ℂ ) ⟶ ℂ | |
| 5 | mullid | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) | |
| 6 | adddi | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 7 | adddir | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ) | |
| 8 | mulass | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) | |
| 9 | eqid | ⊢ 〈 + , · 〉 = 〈 + , · 〉 | |
| 10 | 1 3 4 5 6 7 8 9 | isvciOLD | ⊢ 〈 + , · 〉 ∈ CVecOLD |