This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnaddid . The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnidOLD | ⊢ 0 = ( GId ‘ + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD | ⊢ + ∈ AbelOp | |
| 2 | ablogrpo | ⊢ ( + ∈ AbelOp → + ∈ GrpOp ) | |
| 3 | 1 2 | ax-mp | ⊢ + ∈ GrpOp |
| 4 | ax-addf | ⊢ + : ( ℂ × ℂ ) ⟶ ℂ | |
| 5 | 4 | fdmi | ⊢ dom + = ( ℂ × ℂ ) |
| 6 | 3 5 | grporn | ⊢ ℂ = ran + |
| 7 | eqid | ⊢ ( GId ‘ + ) = ( GId ‘ + ) | |
| 8 | 6 7 | grpoidval | ⊢ ( + ∈ GrpOp → ( GId ‘ + ) = ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) ) |
| 9 | 3 8 | ax-mp | ⊢ ( GId ‘ + ) = ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) |
| 10 | addlid | ⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) | |
| 11 | 10 | rgen | ⊢ ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 |
| 12 | 0cn | ⊢ 0 ∈ ℂ | |
| 13 | 6 | grpoideu | ⊢ ( + ∈ GrpOp → ∃! 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) |
| 14 | 3 13 | ax-mp | ⊢ ∃! 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 |
| 15 | oveq1 | ⊢ ( 𝑦 = 0 → ( 𝑦 + 𝑥 ) = ( 0 + 𝑥 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑦 = 0 → ( ( 𝑦 + 𝑥 ) = 𝑥 ↔ ( 0 + 𝑥 ) = 𝑥 ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝑦 = 0 → ( ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 ) ) |
| 18 | 17 | riota2 | ⊢ ( ( 0 ∈ ℂ ∧ ∃! 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) → ( ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 ) ) |
| 19 | 12 14 18 | mp2an | ⊢ ( ∀ 𝑥 ∈ ℂ ( 0 + 𝑥 ) = 𝑥 ↔ ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 ) |
| 20 | 11 19 | mpbi | ⊢ ( ℩ 𝑦 ∈ ℂ ∀ 𝑥 ∈ ℂ ( 𝑦 + 𝑥 ) = 𝑥 ) = 0 |
| 21 | 9 20 | eqtr2i | ⊢ 0 = ( GId ‘ + ) |