This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 | |
| Assertion | cnntri | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 | |
| 2 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ Top ) |
| 4 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑆 ) ⊆ dom 𝐹 | |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 1 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 7 | 6 | fdmd | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → dom 𝐹 = ∪ 𝐽 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → dom 𝐹 = ∪ 𝐽 ) |
| 9 | 4 8 | sseqtrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 10 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 11 | 1 | ntropn | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐾 ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐾 ) |
| 13 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ 𝐽 ) | |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
| 15 | 1 | ntrss2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 16 | 10 15 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 17 | imass2 | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) |
| 19 | 5 | ssntr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑆 ) ⊆ ∪ 𝐽 ) ∧ ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ 𝐽 ∧ ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ) |
| 20 | 3 9 14 18 19 | syl22anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ) |