This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncls2i.1 | |- Y = U. K |
|
| Assertion | cnntri | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( ( int ` J ) ` ( `' F " S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncls2i.1 | |- Y = U. K |
|
| 2 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 3 | 2 | adantr | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> J e. Top ) |
| 4 | cnvimass | |- ( `' F " S ) C_ dom F |
|
| 5 | eqid | |- U. J = U. J |
|
| 6 | 5 1 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> Y ) |
| 7 | 6 | fdmd | |- ( F e. ( J Cn K ) -> dom F = U. J ) |
| 8 | 7 | adantr | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> dom F = U. J ) |
| 9 | 4 8 | sseqtrid | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " S ) C_ U. J ) |
| 10 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 11 | 1 | ntropn | |- ( ( K e. Top /\ S C_ Y ) -> ( ( int ` K ) ` S ) e. K ) |
| 12 | 10 11 | sylan | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( int ` K ) ` S ) e. K ) |
| 13 | cnima | |- ( ( F e. ( J Cn K ) /\ ( ( int ` K ) ` S ) e. K ) -> ( `' F " ( ( int ` K ) ` S ) ) e. J ) |
|
| 14 | 12 13 | syldan | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) e. J ) |
| 15 | 1 | ntrss2 | |- ( ( K e. Top /\ S C_ Y ) -> ( ( int ` K ) ` S ) C_ S ) |
| 16 | 10 15 | sylan | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( int ` K ) ` S ) C_ S ) |
| 17 | imass2 | |- ( ( ( int ` K ) ` S ) C_ S -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( `' F " S ) ) |
|
| 18 | 16 17 | syl | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( `' F " S ) ) |
| 19 | 5 | ssntr | |- ( ( ( J e. Top /\ ( `' F " S ) C_ U. J ) /\ ( ( `' F " ( ( int ` K ) ` S ) ) e. J /\ ( `' F " ( ( int ` K ) ` S ) ) C_ ( `' F " S ) ) ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( ( int ` J ) ` ( `' F " S ) ) ) |
| 20 | 3 9 14 18 19 | syl22anc | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( int ` K ) ` S ) ) C_ ( ( int ` J ) ` ( `' F " S ) ) ) |