This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpmsubg and friends. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| cnmsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | ||
| cnmsubglem.2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ≠ 0 ) | ||
| cnmsubglem.3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | ||
| cnmsubglem.4 | ⊢ 1 ∈ 𝐴 | ||
| cnmsubglem.5 | ⊢ ( 𝑥 ∈ 𝐴 → ( 1 / 𝑥 ) ∈ 𝐴 ) | ||
| Assertion | cnmsubglem | ⊢ 𝐴 ∈ ( SubGrp ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 2 | cnmsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| 3 | cnmsubglem.2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ≠ 0 ) | |
| 4 | cnmsubglem.3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | |
| 5 | cnmsubglem.4 | ⊢ 1 ∈ 𝐴 | |
| 6 | cnmsubglem.5 | ⊢ ( 𝑥 ∈ 𝐴 → ( 1 / 𝑥 ) ∈ 𝐴 ) | |
| 7 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 8 | 2 3 7 | sylanbrc | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 9 | 8 | ssriv | ⊢ 𝐴 ⊆ ( ℂ ∖ { 0 } ) |
| 10 | 5 | ne0ii | ⊢ 𝐴 ≠ ∅ |
| 11 | 4 | ralrimiva | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 12 | cnfldinv | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) | |
| 13 | 2 3 12 | syl2anc | ⊢ ( 𝑥 ∈ 𝐴 → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 14 | 13 6 | eqeltrd | ⊢ ( 𝑥 ∈ 𝐴 → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 15 | 11 14 | jca | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 16 | 15 | rgen | ⊢ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 17 | 1 | cnmgpabl | ⊢ 𝑀 ∈ Abel |
| 18 | ablgrp | ⊢ ( 𝑀 ∈ Abel → 𝑀 ∈ Grp ) | |
| 19 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 20 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 21 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 22 | 20 21 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 23 | 1 22 | ressbas2 | ⊢ ( ( ℂ ∖ { 0 } ) ⊆ ℂ → ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑀 ) ) |
| 24 | 19 23 | ax-mp | ⊢ ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑀 ) |
| 25 | cnex | ⊢ ℂ ∈ V | |
| 26 | difexg | ⊢ ( ℂ ∈ V → ( ℂ ∖ { 0 } ) ∈ V ) | |
| 27 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 28 | 20 27 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 29 | 1 28 | ressplusg | ⊢ ( ( ℂ ∖ { 0 } ) ∈ V → · = ( +g ‘ 𝑀 ) ) |
| 30 | 25 26 29 | mp2b | ⊢ · = ( +g ‘ 𝑀 ) |
| 31 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 32 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 33 | 21 31 32 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 34 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 35 | 33 1 34 | invrfval | ⊢ ( invr ‘ ℂfld ) = ( invg ‘ 𝑀 ) |
| 36 | 24 30 35 | issubg2 | ⊢ ( 𝑀 ∈ Grp → ( 𝐴 ∈ ( SubGrp ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( ℂ ∖ { 0 } ) ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) ) |
| 37 | 17 18 36 | mp2b | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( ℂ ∖ { 0 } ) ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 38 | 9 10 16 37 | mpbir3an | ⊢ 𝐴 ∈ ( SubGrp ‘ 𝑀 ) |