This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpmsubg and friends. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmgpabl.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| cnmsubglem.1 | |- ( x e. A -> x e. CC ) |
||
| cnmsubglem.2 | |- ( x e. A -> x =/= 0 ) |
||
| cnmsubglem.3 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
||
| cnmsubglem.4 | |- 1 e. A |
||
| cnmsubglem.5 | |- ( x e. A -> ( 1 / x ) e. A ) |
||
| Assertion | cnmsubglem | |- A e. ( SubGrp ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmgpabl.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| 2 | cnmsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| 3 | cnmsubglem.2 | |- ( x e. A -> x =/= 0 ) |
|
| 4 | cnmsubglem.3 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
|
| 5 | cnmsubglem.4 | |- 1 e. A |
|
| 6 | cnmsubglem.5 | |- ( x e. A -> ( 1 / x ) e. A ) |
|
| 7 | eldifsn | |- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
|
| 8 | 2 3 7 | sylanbrc | |- ( x e. A -> x e. ( CC \ { 0 } ) ) |
| 9 | 8 | ssriv | |- A C_ ( CC \ { 0 } ) |
| 10 | 5 | ne0ii | |- A =/= (/) |
| 11 | 4 | ralrimiva | |- ( x e. A -> A. y e. A ( x x. y ) e. A ) |
| 12 | cnfldinv | |- ( ( x e. CC /\ x =/= 0 ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
|
| 13 | 2 3 12 | syl2anc | |- ( x e. A -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 14 | 13 6 | eqeltrd | |- ( x e. A -> ( ( invr ` CCfld ) ` x ) e. A ) |
| 15 | 11 14 | jca | |- ( x e. A -> ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) |
| 16 | 15 | rgen | |- A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) |
| 17 | 1 | cnmgpabl | |- M e. Abel |
| 18 | ablgrp | |- ( M e. Abel -> M e. Grp ) |
|
| 19 | difss | |- ( CC \ { 0 } ) C_ CC |
|
| 20 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 21 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 22 | 20 21 | mgpbas | |- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 23 | 1 22 | ressbas2 | |- ( ( CC \ { 0 } ) C_ CC -> ( CC \ { 0 } ) = ( Base ` M ) ) |
| 24 | 19 23 | ax-mp | |- ( CC \ { 0 } ) = ( Base ` M ) |
| 25 | cnex | |- CC e. _V |
|
| 26 | difexg | |- ( CC e. _V -> ( CC \ { 0 } ) e. _V ) |
|
| 27 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 28 | 20 27 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 29 | 1 28 | ressplusg | |- ( ( CC \ { 0 } ) e. _V -> x. = ( +g ` M ) ) |
| 30 | 25 26 29 | mp2b | |- x. = ( +g ` M ) |
| 31 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 32 | cndrng | |- CCfld e. DivRing |
|
| 33 | 21 31 32 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 34 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 35 | 33 1 34 | invrfval | |- ( invr ` CCfld ) = ( invg ` M ) |
| 36 | 24 30 35 | issubg2 | |- ( M e. Grp -> ( A e. ( SubGrp ` M ) <-> ( A C_ ( CC \ { 0 } ) /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) ) ) |
| 37 | 17 18 36 | mp2b | |- ( A e. ( SubGrp ` M ) <-> ( A C_ ( CC \ { 0 } ) /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x x. y ) e. A /\ ( ( invr ` CCfld ) ` x ) e. A ) ) ) |
| 38 | 9 10 16 37 | mpbir3an | |- A e. ( SubGrp ` M ) |